Short Communication: Occurrence of arbuscular mycorrhizal fungi associated with Casuarina equisetifolia in saline sandy environment, North Sumatra, Indonesia




Abstract. Delvian, Hartanto A. 2022. Short Communication: Occurrence of arbuscular mycorrhizal fungi associated with Casuarina equisetifolia in saline sandy environment, North Sumatra, Indonesia. Biodiversitas 23: 2520-2525. Arbuscular mycorrhizal fungi (AMF) form a mutualistic association with plant roots to cope in the extreme environments including the saline and sandy soils in the coastal areas. In this study, the occurrence of AMF associated with Casuarina equisetifolia that has been planted for coastal rehabilitation located at Cermin Beach, North Sumatra was investigated including its abiotic-biotic interactions from topsoils (0-20 cm) to subsoils (20-80 cm). A total of 10 AM fungal morphotypes were documented with Glomeraceae as the dominant AM fungal taxa (9 morphotypes) and a Glomoid morphotype exists in all soil depths. The number of AMF spores decreased as soil depth increased following other environmental conditions such as pH, soil P availability and soil moisture based on the result of Pearson’s correlation test. The results showed a moderate-to-low level of biodiversity of AMF based on Shannon’s diversity index. The findings revealed the vertical distribution of AMF in a saline environment and supported the planting of C. equisetifolia which successfully recruited the indigenous AMF to form a symbiosis to thrive in the stressful environment.


Becerra A, Bartoloni N, Cofre N, Soteras F, Cabello M. 2014. Arbuscular mycorrhizal fungi in saline soils: Vertical distribution at different soil depth. Braz J Microbiol 45(2): 585-594. DOI: 10.1590/s1517-83822014000200029
Begum N, Qin C, Ahanger MA, Raza S, Khan MI, Ashraf M, Ahmed N, Zhang L. 2019. Role of arbuscular mycorrhizal fungi in plant growth regulation: Implications in abiotic stress tolerance. Front Plant Sci 10: 1068. DOI: 10.3389/fpls.2019.01068
Blaszkowski J. 2012. Glomeromycota. Krakow, Polish Academy of Sciences.
Bray RH, Kurtz LT. 1945. Determination of total organic and available forms of phosphorus in soils. Soil Sci 59: 39-45. DOI: 10.1097/00010694-194501000-00006
Daniel BA, Skipper HD. 1982. methods for the recovery and quantitative estimation of propagules from soil. In: Schenck NC (Ed). Methods & Principles of Mycorrhizal Research. Saint Paul, American Phytopathological Society.
Delvian D. 2021. Effect of land use type on arbuscular mycorrhizal fungi diversity in high altitude of Karo Highland. IOP Conf Ser Earth Environ Sci 713: 012027. DOI: 10.1088/1755-1315/713/1/012027
Delvian, Rambey R. 2019. Effect of salinity on spore germination, hyphal length and root colonization of the arbuscular mycorrhizal fungi. IOP Conf Ser Earth Environ Sci 260: 012124. DOI: 10.1088/1755-1315/260/1/012124
Diagne N, Baudoin E, Svistoonoff S, Ouattara C, Diouf D, Kane A. 2017. Effect of native and allochthonous arbuscular mycorrhizal fungi on Casuarina equisetifolia growth and its root bacterial community. Arid Land Res Manag 32(2): 212-228. DOI: 10.1080/15324982.2017.1406413
Dinh LC. 1998. Fixation of shifting sand dunes by Casuarina equisetifolia in Vietnam. Bois et Forets des Tropiques 1998(256): 35-41.
Djighaly PI, Diagne N, Ngom M, Ngom D, Hocher V, Fall D, Diouf D, Laplaze L, Svistoonoff S, Champion A. 2018. Selection of arbuscular mycorrhizal fungal strains to improve Casuarina equisetifolia L. and Casuarina glauca Sieb. tolerance to salinity. 75: 72.
DOI: 10.1007/s13595-018-0747-1
Gerdemann JW, Nicolson TH. 1963. Spores of mycorrhizal Endogone species extracted from soil by wet sieving and decanting. Trans Brit Mycol Soc 46(2): 235-244. DOI: 10.1016/S0007-1536(63)80079-0
Harjadi B. 2017. The role of Casuarina equisetifolia on micro climate improvement of sandy beach land at Kebumen. J Watershed Manag Res 1(2): 73-81. DOI: 10.20886/jppdas.2017.1.2.73-81
Hestrin R, Hammer EC, Mueller CW, Lehmann J. 2019. Synergies between mycorrhizal fungi and soil microbial communities increase plant nitrogen acquisition. Commun Biol 2: 233. DOI: 10.1038/s42003-019-0481-8
Juniper S, Abbott L. 1993. Vesicular-arbuscular mycorrhizas and soil salinity. Mycorrhiza 4: 45-57. DOI: 10.1007/BF00204058
Leifheit EF, Veresoglou SD, Lehmann A, Morris EK, Rillig MC. 2014. Multiple factors influence the role of arbuscular mycorrhizal fungi in soil aggregation – a meta analysis. Plant Soil 374: 523-537. DOI: 10.1007/s11104-013-1899-2
Liang Y, Pan F, He X, Chen X, Su Y. 2016. Effect of vegetation types on soil arbuscular mycorrhizal fungi and nitrogen-fixing bacterial communities in a karst region. Environ Sci Pollut Res Int 23(18): 18482-18491. DOI: 10.1007/s11356-016-7022-5
Liu X, Feng Z, Zhao Z, Zhu H, Yao Q. 2020. Acidic soil inhibits the functionality of arbuscular mycorrhizal fungi by reducing arbuscule formation in tomato roots. Soil Sci Plant Nutr 66(2): 275-284. DOI: 10.1080/00380768.2020.1721320
Neffar S, Beddiar A, Chenchouni H. 2015. Effects of soil chemical properties and seasonality on mycorrhizal status of prickly pear (Opuntia ficus-indica) planted in hot arid steppe rangelands. Sains Malaysiana 44(5): 671-680.
Ranwell DS. 1975. The Ecology of Salt Marshes and Salt Dunes. London, Chapman and Hall Ltd.
Schenck NC, Perez Y. 1990. Manual for Identification of Vesicular Arbuscular Mycorrhizal Fungi (INVAM). Gainesville, University of Florida.
Schouteden N, Waele DD, Panis B, Vos CM. 2015. Arbuscular mycorrhizal fungi for the biocontrol of plant-parasitic nematodes: A Review of the mechanisms involved. Front Microbiol 6: 1280. DOI: 10.3389/fmicb.2015.01280
Silvani VA, Colombo RP, Scorza MV, Bidondo LF, Rothen CP, Scotti A, Fracchia S, Godeas A. 2016. Arbuscular mycorrhizal fungal diversity in high-altitude hypersaline Andean wetlands studied by 454-sequencing and morphological approaches. Symbiosis 72: 143-152.
DOI: 10.1007/s13199-016-0454-3
Sosa-Hernandez MA, Roy J, Hempel S, Rillig MC. 2018. Evidence for subsoil specialization in arbuscular mycorrhizal fungi. Front Ecol Evol 6: 67.
DOI: 10.3389/fevo.2018.00067
Spatafora JW, Chang Y, Benny GL, Lazarus K, Smith ME, Berbee ML, Bonito G, Corradi N, Grigoriev I, Gryganskyi A, James TY, Donnell KO, Roberson RW, Taylor TN, Uehling J, Vilgalys R, White MM, Stajich JE. 2017. A phylum-level phylogenetic classification of zygomycete fungi based on genome-scale data. Mycologia 108(5): 1028-1046. DOI: 10.3852/16-042
Treseder KK, Cross A. 2006. Global distributions of arbuscular mycorrhizal fungi. Ecosystems 9: 305-316. DOI: 10.1007/s10021-005-0110-x
Valyi K, Mardhiah U, Rillig MC. 2016. Community assembly and coexistence in communities of arbuscular mycorrhizal fungi. ISME J 10: 2341-2351. DOI: 10.1038/ismej.2016.46
Walkley A, Black IA. 1934. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci 37(1): 29-38. DOI: 10.1097/00010694-193401000-00003
Wang H, Pampati N, McCormick WM, Bhattacharrya L. 2016. Protein nitrogen determination by kjeldahl digestion and ion chromatography. J Pharm Sci 105(6): 1851-1857. DOI: 10.1016/j.xphs.2016.03.039
Wang W, Shi J, Xie Q, Jiang Y, Yu N, Wang E. 2017. Nutrient exchange and regulation in arbuscular mycorrhizal symbiosis. Mol Plant 10(9): 1147-1158. DOI: 10.1016/j.molp.2017.07.012
Zhang Y, Zhong CL, Chen Y, Chen Z, Jiang QB, Wu C, Pinyopusarerk K. 2010. Improving drought tolerance of Casuarina equisetifolia seedlings by arbuscular mycorrhizas under glasshouse conditions. New Forests 40(3): 261-271. DOI: 10.1007/s11056-010-9198-8