Analysis of the effect of ENSO and IOD on the productivity of yellowfin tuna (Thunnus albacares) in the South Indian Ocean, East Java, Indonesia

##plugins.themes.bootstrap3.article.main##

ABU BAKAR SAMBAH
AURUM NOOR’IZZAH
CANDRA ADI INTYAS
DENNY WIDHIYANURIYAWAN
DIDIET POERNAWAN AFFANDY
ADI WIJAYA

Abstract

Abstract. Sambah AB, Noor’izzah A, Intyas CA, Widhiyanuriyawan D, Affandy DP, Wijaya A. 2023. Analysis of the effect of ENSO and IOD on the productivity of yellowfin tuna (Thunnus albacares) in the South Indian Ocean, East Java, Indonesia. Biodiversitas 24: 2689-2700. Yellowfin tuna (Thunnus albacares) is one of the fish that migrates through the Indian Ocean and is primarily caught in the south Java waters which are directly adjacent to the Indian Ocean. Fish abundance and migration are influenced by oceanographic factors, including climatic factors which affect annual and interannual variations, such as the Indian Ocean Dipole (IOD) and the El Nino Southern Oscillation (ENSO). This study aimed to determine the effect of climate anomalies on the productivity of yellowfin tuna in the Indian Ocean south of East Java, Indonesia. Data collection was carried out at Coastal Fishing Port of Pondokdadap East Java, involving 58 respondents consisting of fishermen with yellowfin tuna catches. The boundaries of the research area are at coordinates 110.9°-114.5° East Longitude and 8°-11° South Latitude. The data used in the analysis consisted of Sea Surface Temperature (SST) data, chlorophyll-a data, Nino 3.4 data, Dipole Mode Index (DMI) data, and yellowfin tuna catch data for the year 2017-2021. The results showed that of the fifteen GAM models, the combination of variables that most affected fish productivity was the distribution of chlorophyll-a and the ENSO phenomenon with values ??of AIC (1503.33) and DE (64.30%). Pearson correlation analysis showed that the IOD phenomenon was influenced by SST and chlorophyll-a, while SST and chlorophyll-a did not significantly influence the ENSO phenomenon. These results indicated that the phenomenon of climate anomalies and the oceanographic conditions in the waters indirectly affect fish productivity through the food chain process.

##plugins.themes.bootstrap3.article.details##

References
Amri K, Satria F. 2013. Impact of climate anomaly on catch composition of neritic tuna in Sunda Strait. Indones Fish Res J 19 (2): 61-72. DOI: 10.15578/ifrj.19.2.2013.61-72.
Aranda G, Abascal FJ, Varela JL, Medina A. 2013. Spawning behaviour and post-spawning migration patterns of atlantic bluefin tuna (Thunnus thynnus) ascertained from satellite archival tags. PLoS One 8 (10): e76445. DOI: 10.1371/journal.pone.0076445.
Arora A, Rao SA, Chattopadhyay R, Goswami T, George G, Sabeerali CT. 2016. Role of Indian Ocean SST variability on the recent global warming hiatus. Glob Planet Change 143: 21-30. DOI: 10.1016/j.gloplacha.2016.05.009.
Atmadipoera AS, Khairunnisa Z, Kusuma DW. 2018. Upwelling characteristics during El Nino 2015 in Maluku Sea. IOP Conf Ser: Earth Environ Sci 176: 012018. DOI: 10.1088/1755-1315/176/1/012018.
Barnston AG, Tippett MK, L'Heureux ML, Li S, DeWitt DG. 2012. Skill of real-time seasonal ENSO model predictions during 2002-11: Is our capability increasing? Bull Am Meteorol Soc 93 (5): 631-651. DOI: 10.1175/BAMS-D-11-00111.2.
Bjerknes JA. 1966. A possible response of the atmospheric Hadley circulation to equatorial anomalies of ocean temperature. Tellus 18 (4): 820-829. DOI: 10.3402/tellusa.v18i4.9712.
Cadrin SX, Dickey-Collas M. 2014. Stock assessment methods for sustainable fisheries. ICES J Mar Sci 72 (1): 1-6. DOI: 10.1093/icesjms/fsu228.
Fadlan A, Sugianto DN, Kunarso, Zainuri M. 2017. Influence of ENSO and IOD to variability of sea surface height in the north and south of Java Island. IOP Conf Ser: Earth Environ Sci 55: 012021. DOI: 10.1088/1755-1315/55/1/012021.
Fonteneau A, Pereira JG. 2012. Analysis of the daily catch and effort data of the bluefin (Thunnus thynnus) Algarve trap fishery during the years 1898-1900. Aquat Living Resour 25 (4): 297-310. DOI: 10.1051/alr/2012023.
Fraile I, Murua H, Goñi N, Caballero A. 2010. Effects of environmental factors on catch rates of FAD-associated yellowfin (Thunnus albacares) and skipjack (Katsuwonus pelamis) tunas in the western Indian Ocean. Indian Ocean Tuna Commission Proceedings, 22. IOTC-2010-WPTT-46.
George G, Jayaraman J, Shah P, Joseph T, Raj MS, Shafeeque M, Platt T, Sathyendranath S. 2019. How oceanography influences fishery biology? - A case of distribution differences in carnivorous and planktivorous fishes along the Coastal Waters of Eastern Arabian Sea. In: Recent Advances in Fishery Biology Techniques for Biodiversity Evaluation and Conservation. Central Marine Fisheries Research Institute, Kochi, Kerala.
George G. 2014. Numerical modelling and satellite remote sensing as tools for research and management of marine fishery resources in remote sensing and modeling: advances in coastal and marine resources. In: Finkl C, Makowski C (Eds). Remote Sensing and Modeling. Springer International Publishing, Switzerland. DOI: 10.1007/978-3-319-06326-3_18.
Guo XH, Zhai WD, Dai MH, Zhang C, Bai Y, Xu Y, Li Q, Wang GZ. 2015. Air-sea CO2 fluxes in the East China Sea based on multiple-year underway observations. Biogeosciences 12 (18): 5495-5514. DOI: 10.5194/bg-12-5495-2015.
Harlyan LI, Sambah AB, Iranawati F, Ekawaty R. 2020. Klasterisasi spasial keragaman spesies tuna di perairan Selatan Jawa. Jurnal Perikanan Universitas Gadjah Mada 23 (1): 9-16. DOI: 10.22146/jfs.58917. [Indonesian]
Hsu TY, Chang Y, Lee MA, Wu RF, Hsiao SC. 2021. Predicting skipjack tuna fishing grounds in the western and central pacific ocean based on high-spatial-temporal-resolution satellite data. Remote Sens 13 (5): 861. DOI: 10.3390/rs13050861.
Kratzer S, Alikas K, Harvey T, Beltrán-Abaunza JM, Morozov E, Mustapha SB, Lavender S. 2016. Multitemporal remote sensing of coastal waters. In: Ban Y (eds). Multitemporal Remote Sensing. Remote Sensing and Digital Image Processing. Springer, Cham. DOI: 10.1007/978-3-319-47037-5_19.
Kumar PS, Pillai GN, Manjusha U. 2014. El Nino Southern Oscillation (ENSO) impact on tuna fisheries in Indian Ocean. Springerplus 3 (1): 591. DOI: 10.1186/2193-1801-3-591.
Lau KM, Yang S. 2022. Walker Circulation In: Holton J, Pyle JP, Curry J (eds). Encyclopedia of atmospheric sciences. Academic Press, London.
Lee MZ, Mekanik F, Talei A. 2022. Dynamic neuro-fuzzy systems for forecasting El Niño Southern Oscillation (ENSO) using oceanic and continental climate parameters as inputs. J Mar Sci Eng 10 (8): 1161. DOI: 10.3390/jmse10081161.
Lira CP, Taborda R. 2014. Advances in applied remote sensing to coastal environments using free satellite imagery. In: Advances in Coastal and Marine Resources: Remote Sensing and Modeling. Edition: Coastal Research Library Chapter 4. Springer International Publishing, Switzerland. DOI: 10.1007/978-3-319-06326-3_4.
Lumban-Gaol J, Leben RR, Vignudelli S, Mahapatra K, Okada Y, Nababan B, Mei-Ling M, Amri K, Arhatin RE, Syahdan M. 2015. Variability of satellite-derived sea surface height anomaly, and its relationship with bigeye tuna (Thunnus obesus) catch in the Eastern Indian Ocean. Eur J Remote Sens 48 (1): 465-477. DOI: 10.5721/EuJRS20154826.
Monolisha S, Platt T, Sathyendranath S, Jayasankar J, George G, Jackson T. 2018. Optical classification of the coastal waters of the Northern Indian Ocean. Front Mar Sci 5: 87. DOI: 10.3389/fmars.2018.00087.
Mugo R, Saitoh SI, Nihira A, Kuroyama T. 2010. Habitat characteristics of skipjack tuna (Katsuwonus pelamis) in the Western North Pacific: A remote sensing perspective. Fish Oceanogr 19 (5): 382-396. DOI: 10.1111/j.1365-2419.2010.00552.x.
NOAA ESRL Physical Sciences Laboratory. 2018. Niño 3.4 SST Index. Updated: Jul 31, 2018. National Oceanic and Atmospheric Administration. https://psl.noaa.gov/gcos_wgsp/Timeseries/Nino34/.
Novitasari F, Nelwan AP, Farhum SA. 2022. Musim penangkapan ikan tuna sirip kuning (Thunus albacares) menggunakan alat tangkap pancing ulur di perairan Teluk Bone yang didaratkan di Kabupaten Luwu. Jurnal Penelitian Perikanan Indonesia 28 (1): 1-17. DOI: 10.15578/jppi.28.1.2022.1-6. [Indonesian]
Nur’utami MN, Hidayat R. 2016. Influences of IOD and ENSO to Indonesian rainfall variability: Role of atmosphere-ocean interaction in the indo-pacific sector. Procedia Environ Sci 33: 196-203. DOI: 10.1016/j.proenv.2016.03.070.
Pauly D, Zeller D. 2016. Catch reconstructions reveal that global marine fisheries catches are higher than reported and declining. Nat Commun 7: 10244. DOI: 10.1038/ncomms10244.
Peck MA, Baumann H, Bernreuther M, Clemmesen C, Herrmann JP, Haslob H, Huwer B, Kanstinger P, Köster FW, Petereit C, Temming A, Voss R. 2012. The ecophysiology of Sprattus sprattus in the Baltic and North Seas. Prog Oceanogr 103: 42-57. DOI: 10.1016/j.pocean.2012.04.013.
Peck MA, Reglero P, Takahashi M, Catalán IA. 2013. Life cycle ecophysiology of small pelagic fish and climate-driven changes in populations. Prog Oceanogr 116: 220-245. DOI: 10.1016/j.pocean.2013.05.012.
Ren HL, Jin FF, Song LC, Lu B, Tian B, Zuo J, Liu Y, Wu J, Zhao C, Nie Y, Zhang P, Ba J, Wu Y, Wan J, Yan Y, Zhou F. 2017. Prediction of primary climate variability modes in Beijing Climate Center. J Meteorol Res 31: 204-223. DOI: 10.1007/s13351-017-6097-3.
Ren HL, Zuo J, Deng Y. 2019. Statistical predictability of Niño indices for two types of ENSO. Clim Dyn 52: 5361-5382. DOI: 10.1007/s00382-018-4453-3.
Sambah AB, Miura F, Kadarisman HP, Sartimbul A. 2013. Remote sensing application for Sardinella lemuru assessment: A case study of the south Waters of Malang Regency, East Java, Indonesia. In: Frouin RJ, Ebuchi N, Pan D, Saino T (eds). Remote Sen Mar Environ II Proc SPIE, Bellingham, 2013. DOI: 10.1117/12.976284.
Santoso A, Mcphaden MJ, Cai W. 2017. The defining characteristics of ENSO extremes and the strong 2015/2016 El Niño. Rev Geophys 55 (4): 1079-1129. DOI: 10.1002/2017RG000560.
Santoso TW, Kunarso, Marwoto J. 2021. Analisa spasial dan temporal suhu permukaan laut dan klorofil-a selama 2 dekade di perairan Indonesia. Indones J Oceanogr 3 (4): 370-381. DOI: 10.14710/ijoce.v3i4.12384. [Indonesian]
Saputra C, Arthana IW, Hedrawan IG. 2017. Studi ancaman sumber daya ikan lemuru (Sardinella lemuru) di Selat Bali hubungannya dengan ENSO dan IOD. Ecotrophic Jurnal Ilmu Lingkungan 11 (2): 140-147. [Indonesian].
Sari QW, Utari PA, Setiabudidaya D, Yustian I, Siswanto E, Iskandar I. 2020. Surface chlorophyll-a variations in the Southeastern Tropical Indian Ocean during various types of the positive Indian Ocean Dipole events. Intl J Remote Sens 41 (1): 171-184. DOI: 10.1080/01431161.2019.1637962.
Sartimbul A, Nakata H, Rohadi E, Yusuf B, Kadarisman HP. 2010. Variations in chlorophyll-a concentration and the impact on Sardinella lemuru catches in Bali strait, Indonesia. Prog Oceanogr 87 (1-4): 168-174. DOI: 10.1016/j.pocean.2010.09.002.
Setiawati MD, Sambah AB, Miura F, Tanaka T, As-syakur AR. 2015. Characterization of bigeye tuna habitat in the Southern Waters off Java-Bali using remote sensing data. Adv Space Res 55 (2): 732-746. DOI: 10.1016/j.asr.2014.10.007.
Setyadji B, Amri K. 2017. Pengaruh anomali iklim (ENSO dan IOD) terhadap sebaran ikan pedang (Xiphias gladius) di Samudera Hindia bagian timur. Jurnal Segara 13 (1): 49-63. DOI: 10.15578/segara.v13i1.6422. [Indonesian]
Simanjuntak F, Lin TH. 2022. Monsoon effects on chlorophyll-a, sea surface temperature, and ekman dynamics variability along the southern coast of lesser Sunda islands and its relation to ENSO and IOD based on satellite observations. Remote Sens 14 (7): 1682. DOI: 10.3390/rs14071682.
Sprintall J, Revelard A. 2014. The Indonesian throughflow response to Indo-Pacific climate variability. J Geophys Res: Ocean 119 (2): 1161-1175. DOI: 10.1002/2013JC009533.
Syamsuddin ML, Saitoh SI, Hirawake T, Bachri S, Harto AB. 2013. Effects of El Niño-Southern oscillation events on catches of bigeye tuna (Thunnus obesus) in the eastern Indian Ocean off Java. Fish Bull 111 (2): 175-188. DOI: 10.7755/FB.111.2.5.
Tangke U, Senen B. 2020. Distribution of sea surface temperature and chlorophyll-a concentration its correlation with small pelagic fish catch in Dodinga Bay. IOP Conf Ser: Earth Environ Sci 584: 012020. DOI: 10.1088/1755-1315/584/1/012020.
Thushara V, Vinayachandran PN. 2020. Unprecedented surface chlorophyll blooms in the Southeastern Arabian Sea during an extreme negative Indian Ocean Dipole. Geophys Res Lett 47 (13): e2019GL085026. DOI: 10.1029/2019GL085026.
Wang C, Deser C, Yu JY, DiNezio P, Clement A. 2017. El Niño and Southern Oscillation (ENSO): A review. In: Glymn P, Manzello D, Enochs I. Coral Reefs of the Eastern Pacific (Eds). Springer Science Publisher, Dordrecht. DOI: 10.1007/978-94-017-7499-4_4.
Wijaya A, Zakiyah U, Sambah AB, Setyohadi D. 2020. Spatio-temporal variability of temperature and chlorophyll-a concentration of sea surface in Bali Strait, Indonesia. Biodiversitas 21 (11): 5283-5290. DOI: 10.13057/biodiv/d211132.
Yang G, Zhao X, Li Y, Liu L, Wang F, Yu W. 2019. Chlorophyll variability induced by mesoscale eddies in the southeastern tropical Indian Ocean. J Mar Syst 199: 103209. DOI: 10.1016/j.jmarsys.2019.103209.
Zhang T, Song L, Yuan H, Song B, Ngando NE. 2021. Comparative study on habitat models for adult bigeye tuna in the Indian Ocean based on gridded tuna longline fishery data. Fish Oceanogr 30 (5): 584-607. DOI: 10.1111/fog.12539.