Multiplex PCR detection of mackerel-based food adulteration with pleco and chicken in selected areas around Ciliwung River, Indonesia

##plugins.themes.bootstrap3.article.main##

RINI WIDAYANTI
HERJUNO ARI NUGROHO
DOROTHEA VERA MEGARANI
DYAH AYU WIDIASIH
SUHENDRA PAKPAHAN

Abstract


Abstract. Widiyanti R, Nugroho HA, Megarani DV, Widiasih DA, Pakpahan S. 2023. Multiplex PCR detection of mackerel-based food adulteration with pleco and chicken in selected areas around Ciliwung River, Indonesia. Biodiversitas 24: 1538-1543. Detecting fish product adulteration is crucial to ensure food safety since pleco meat was already reported to carry several heavy metals that might harm human health. Pleco is invasive species in the Ciliwung River and is commonly used as adulteration material for fish-based products. Adulteration in mackerel-based food products may alter the nutritional value and carry heavy metal contamination from the bottom-feeder fish's meat (pleco). Therefore, using the DNA barcoding technique, a molecular approach has been used to authenticate mackerel fish products (including dumplings and otak-otak). This study aimed to develop a specific multiplex PCR method for simultaneously detecting processed products from mackerel and pleco. The sample consists of 21 processed food items initially made from mackerel. The samples were taken in the selected area around the Ciliwung River. All the samples can be amplified successfully, and amplification lengths were 108, 171, and 300 bp, respectively. Analysis from various claimed mackerel products showed that five samples were positive for pleco adulteration, and 11 products contained chicken meat addition. The phylogenetic tree was constructed from selected sequences from our samples and showed that the amplicons were clustered in three clades, mackerel (Scomberomorus), pleco (Pterygoplichthys), and chicken (Gallus gallusLinnaeus, 1758). The findings of this study revealed that 23.80% (5/21) products contained pleco, and 52.38% (11/21) contained chicken meat addition. The addition of an unusual component to food composition may alter nutritional value as well as may affect food hygiene and safety.


##plugins.themes.bootstrap3.article.details##

References
Aksari YD, Perwitasari D, Butet NA. 2015. Kandungan logam berat (Cd, Hg, dan Pb) pada ikan sapu-sapu, Pterygoplichthys pardalis (Castelnau, 1855) di Sungai Ciliwung. Jurnal Iktiologi Indonesia 15(3): 257-266.
Alfisyahrin NF. 2013. Distribusi logam berat timbal (Pb) dalam daging ikan sapu-sapu (Pterygoplichthys pardalis) di Sungai Ciliwung.[Thesis]. Institut Pertanian Bogor. [Indonesian]
Ali ME, Razzak MA, Hamid SBA. 2014. Multiplex PCR in species authentication: Probability and prospects-A review. Food Analytical Methods: 1–17.
Alikord M, Keramat J, Kadivar M et al. 2016. Multiplex-PCR as a rapid and sensitive method for identification of meat species in halal-meat products. Recent patents on food, nutrition & agriculture 8(3): 175-182.
Al-Taghlubee D, Misaghi A, Shayan P et al. 2019. Comparison of two multiplex PCR systems for meat species authentication. Journal of food quality and hazards control 6(1): 8-15.
Armbruster JW, Page LM. 2006. Rediscription of Pterygoplichthys punctatus and description of a new species of Pterygoplichthys (Siluriformes: Loricariidae). Ineotropical Ichthyology 4(4): 401-409.
Cho AR, Dong HJ, Cho S. 2014. Meat species identification using loop-mediated isothermal amplification assay targeting species-specific mitochondrial DNA. Korean journal for food science of animal resources 34(6): 799.
Dwiyitno D, Hoffman S, Parmentier K et al. 2022. Universal primer design for crustacean and bivalve-mollusc authenticity based on cytochrome-b gene: Universal primer for crustacean and bivalve-mollusc. Biodiversitas Journal of Biological Diversity 23(1): 17-24.
Elfidasari D, Ismi LN, Shabira AP et al. 2018. The correlation between heavy metal and nutrient content in plecostomus (Pterygoplichthys pardalis) from Ciliwung River in Jakarta. Biosaintifika 10(3): 597-604.
Elfidasari D, Qoyyimah FD, Fahmi MR. 2016. Morphometric and Meristic of Common Pleco (Loricariidae) on Ciliwung Riverwatershed South Jakarta Region. Int J Adv Res 4(11): 57-62.
Elfidasari D, Shabira AP, Sugoro I et al. 2019. The nutrient content of Plecostomus (Pterygoplichthys pardalis) fleshfrom Ciliwung River Jakarta, Indonesia. Nusantara Bioscience 11(1). Pp: 30-34. DOI: 10.13057/nusbiosci/n110106.
Galal-Khallaf A. 2021. Multiplex PCR and 12S rRNA gene sequencing for detection of meat adulteration: A case study in the Egyptian markets. Gene 764: 145062.
Hou B, Meng X, Zhang L, Guo J et al. 2015. Development of a sensitive and specific multiplex PCR method for the simultaneous detection of chicken, duck and goose DNA in meat products. Meat Sci 101:90-94. DOI: 10.1016/j.meatsci.2014.11.007.
Ismi LN, Elfidasari D, Puspitasari RL et al. 2019. The Contents of Heavy Metals in Plecostomus (Loricariidae) from the Ciliwung River Jakarta, Indonesia. BioEco2019- International Biodiversity & Ecology Sciences Symposium.
Jiang H, Jiang X, Ru Y, Wang J et al. 2020. Application of hyperspectral imaging for detecting and visualizing leaf lard adulteration in minced pork. Infrared Physics & Technology 110:103467.
Kowalska EH, Grela M, Gryzi?ska et al. 2019. Molecular techniques for detecting food adulteration. Med Weter 75(7): 404-409.
Li J, Li J, Xu S, Xiong S et al. 2019. A rapid and reliable multiplex PCR assay for simultaneous detection of fourteen animal species in two tubes. Food Chem 295:395-402. DOI: 10.1016/j.foodchem.2019.05.112.
Li X, Guan Y. 2019. Specific Identification of the Adulterated Components in Beef or Mutton Meats Using Multiplex PCR. J AOAC Int 102(4):1181-1185. DOI: 10.5740/jaoacint.18-0338.
Liu W, Wang X, Tao J et al. 2019. A Multiplex PCR Assay Mediated by Universal Primers for the Detection of Adulterated Meat in Mutton. J Food Prot 82(2):325-330. DOI: 10.4315/0362-028X.JFP-18-302.
Mahdiah E. 2002. Pengaruh Penambahan Bahan Pengikat Terhadap Karakteristik Fisik Otak-Otak Ikan Sapu-Sapu (Liposarcus pardalis) (English: The Effect of Fastening Compound On Physical Characteristic of Pleco’s Otak Otak (Loposarcus pardalis)) .[Thesis]. Bogor (ID):IPB University. [Indonesian]
Mandli J, Fatimi IE, Seddaoui N et al. 2018. Enzyme immunoassay (ELISA/immunosensor) for a sensitive detection of pork adulteration in meat. Food chemistry 255: 380-389.
Maulid DY, Nurilmala M. 2015. DNA barcoding untuk autentifikasi produk ikan tenggiri (Scomberomorus sp.). Jurnal Akuatika (2): 154-160.
Munandar K. 2016. Kandungan logam berat Pb dan Cd pada ikan sapu-sapu yang tertangkap di sungai bedadung Kabupaten Jember. Proceeding of National Seminary II Prodi Pendidikan Biologi FKIP dan Pusat Studi Lingkungan dan Kependudukan Universitas Muhammadiyah Malang. Malang, 26 Maret 2016. [Indonesian]
Nurjannah, Nitibaskara R, Madiah E. 2005. Pengaruh penambahan bahan pengikat terhadap karakteristik fisil otak-otak ikan sapu-sapu (Liposarcus pardalis). Buletin Teknologi Hasil Perikanan: 1-11.
Putri HD, Elfidasari D, Haninah H et al. 2020. Nutritional Content of Bone Flour Made from Plecos Fish Pterygoplichthys pardalis from the Ciliwung River, Indonesia. Biosaintifika 12 (3) (2020): 329-334. p-ISSN 2085-191X | e-ISSN 2338-7610.
Qin P, Qu W, Xu J et al. 2019. A sensitive multiplex PCR protocol for simultaneous detection of chicken, duck, and pork in beef samples. Journal of food science and technology 56(3): 1266-1274.
Quinto CA, Tinoco R, Hellberg RS. 2016. DNA barcoding reveals mislabeling of game meat species on the US commercial market. Food Control 59: 386-392.
Rashid NRA, Ali ME, Hamid SBA et al. 2015. A suitable method for the detection of a potential fraud of bringing macaque monkey meat into the food chain. Food Additives & Contaminants: Part A 32(7), 1013-1022.
Rohman A, Erwanto Y, Man YBC. 2011. Analysis of pork adulteration in beef meatball using Fourier transform infrared (FTIR) spectroscopy. Meat Science 88(1): 91-95.
Rojas M, González I, Pavón M et al. 2011. Mitochondrial and nuclear markers for the authentication of partridge meat and the specific identification of red-legged partridge meat products by polymerase chain reaction. Poultry Science 90(1): 211–222.
Rojas M, Gonzlez I, Fajardo V et al. 2008. Polymerase chain reaction–restriction fragment length polymorphism authentication of raw meats from game birds. Journal of AOAC International 91(6): 1416–1422.
Sentandreu MÁ, Sentandreu E. 2014. Authenticity of meat products: Tools against fraud. Food Research International 60: 19–29.
Setyarini RE, Astuti D, Ambarwati. 2005. Studi Kandungan Logam Berat (Cu, Cd, Pb) pada Ikan Sapu-Sapu (Hypostomus plecostomus) di Sungai Bengawan Solo. Forum Geografi 19 (2): 103-114.
Uddin SMK, Hossain MAM, Chowdhury ZZ et al. 2021. Short targeting multiplex PCR assay to detect and discriminate beef, buffalo, chicken, duck, goat, sheep and pork DNA in food products. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 38(8):1273-1288. DOI: 10.1080/19440049.2021.1925748.
Widayanti R, Nugroho HA, Megarani DV et al. 2022. Revealing Spanish mackerel’s diversity in Indonesian through local commodities in the fish market. Biodiversitas Journal of Biological Diversity 23(2): 624-630.

Most read articles by the same author(s)