Molecular analysis of pathogenic Escherichia coli isolated from cow meat in Yogyakarta, Indonesia using 16S rRNA gene

##plugins.themes.bootstrap3.article.main##

ALVITA INDRASWARI
https://orcid.org/0000-0002-5504-9392
I WAYAN SUARDANA
https://orcid.org/0000-0003-2428-5410
ARIS HARYANTO
https://orcid.org/0000-0001-8477-764X
DYAH AYU WIDIASIH
https://orcid.org/0000-0003-0830-9857

Abstract

Abstract. Indraswari A, Suardana IW, Haryanto A, Widiasih DA. 2021. Molecular analysis of pathogenic Escherichia coli isolated from cow meat in Yogyakarta, Indonesia using 16S rRNA gene. Biodiversitas 22: 4566-4573. Meat has been recognized as a major source of foodborne disease and a public health problem. The characteristics of meat become an ideal growth medium for various microorganisms if not handled properly. Pathogenic Escherichia coli is one of the foodborne disease agents that causes diarrhea. Identification of pathogenic E. coli isolated from cow meat needs to be done. This research aims to study nucleotide sequence of 16S rRNA gene of pathogenic E. coli isolated from cow meat in Yogyakarta, Indonesia using Polymerase Chain Reaction (PCR). These fifteen isolates have been detected for eae target gene, then amplification of the 16S rRNA gene was carried out using primers 27F and 1492R. Phylogenetic tree reconstruction was performed on the fifteen isolates of pathogenic E. coli to figure out the relationship to reference strains available at the GenBank. Results show that nucleotide sequence among the fifteen isolates from different traditional markets in Yogyakarta, Indonesia and reference strains are very similar. The fifteen isolates have small genetic distance to the reference strains, and these fifteen isolates are also in the same clade with reference strains. This research shows that the fifteen isolates under investigation are closely related to the reference strains, which is Shiga-toxin producing E. coli (STEC). People should pay more attention in processing food stock, especially cow meat. Further research may focus on determining the strain of those fifteen isolates.

##plugins.themes.bootstrap3.article.details##

References
Amarantini C, Sembiring L, Kushadiwijaya H, Asmara W. 2011. Identification and characterization of Salmonella typhi isolates from Southwest Sumba District, East Nusa Tenggara based on 16S rRNA gene sequences. Biodiversitas 12(1): 1–6. doi: 10.13057/biodiv/d120101.
Antaki-zukoski EM, Li X, Pesavento PA, Nguyen THB, Hoar BR, Atwill ER. 2018. Comparative pathogenicity of wildlife and bovine Escherichia coli O157?: H7 strains in experimentally inoculated neonatal jersey calves. Vet Sci 5(88): 1–11. doi:10.3390/vetsci5040088.
Arisanti RR, Indriani C, Wilopo SA. 2018. Contribution of agents and factors causing foodborne outbreak in Indonesia: a systematic review. BKM J Community Med Public Heal 34(3): 99–106. doi: 10.22146/bkm.33852.
Azmuda N, Fakruddin M, Khan SI, Birkeland NK. 2019. Bacterial community profiling of tropical freshwaters in Bangladesh. Front Public Heal 7(115): 1–16. doi: 10.3389/fpubh.2019.00115.
Botkin DJ, Galli L, Sankarapani V, Soler M, Rivas M, Torres AG. 2012. Development of a multiplex PCR assay for detection of Shiga toxin-producing Escherichia coli, enterohemorrhagic E. coli, and enteropathogenic E. coli strains. Front Cell Infect Microbiol 2(8): 1–10. doi: 10.3389/fcimb.2012.00008.
Canizalez-Roman A, Gonzalez-Nuñez E, Vidal JE, Flores-Villaseñor H, León-Sicairos N. 2013. Prevalence and antibiotic resistance profiles of diarrheagenic Escherichia coli strains isolated from food items in northwestern Mexico. Int J Food Microbiol 164: 36–45. doi: 10.1016/j.ijfoodmicro.2013.03.020.
CDC. 2014. Questions and answers E. coli. Available from: https://www.cdc.gov/ecoli/general/index.html.
Croxen MA, Law RJ, Scholz R, Keeney KM, Wlodarska M, Finlay BB. 2013. Recent advances in understanding enteric pathogenic Escherichia coli. Clin Microbiol Rev 26(4): 822–80. doi: 10.1128/CMR.00022-13.
Darwish WS, Eldin WFS, Eldesoky KI. 2015. Prevalence, molecular characterization and antibiotic susceptibility of Escherichia coli isolated from duck meat and giblets. J Food Saf 35: 410–5. doi: 10.1111/jfs.12189.
Fialho OB, de Souza EM, de Borba Dallagassa C, de Oliveira Pedrosa F, Klassen G, Irino K, et al. 2013. Detection of diarrheagenic Escherichia coli using a two-system multiplex-PCR protocol. J Clin Lab Anal 27: 155–161. doi: 10.1002/jcla.21578.
Fujioka M, Kasai K, Miura T, Sato T, Otomo Y. 2009. Rapid diagnostic method for the detection of diarrheagenic Escherichia coli by multiplex PCR. Jpn J Infect Dis 62: 476–480.
Ghazali NSH, Rashid NHA. 2019. Molecular identification of bacterial communities from vegetables samples as revealed by DNA sequencing of universal primer 16S rRNA gene. Int J Med Sci 4(1): 19–26.
Goma MKE, Indraswari A, Haryanto A, Widiasih DA. 2019. Detection of Escherichia coli O157:H7 and Shiga toxin 2a gene in pork, pig feces, and clean water at Jagalan slaughterhouse in Surakarta, Central Java Province, Indonesia. Vet World 12(10): 1584–90. doi: 10.14202/vetworld.2019.1584-1590
Gomes TAT, Elias WP, Scaletsky ICA, Guth BEC, Rodrigues JF, Piazza RMF, et al. 2016. Diarrheagenic Escherichia coli. Brazilian J Microbiol 47: 3–30. doi: 10.1016/j.bjm.2016.10.015.
González J, Cadona JS, Sanz M, Bustamante A V., Sanso AM. 2017. Molecular characterization of diarrheagenic Escherichia coli isolated from vegetables in Argentina. Int J Food Microbiol 261: 57–61. doi: 10.1016/j.ijfoodmicro.2017.09.021.
Habets A, Engelen F, Duprez J, Devleesschauwer B, Heyndrickx M, Zutter L De, et al. 2020. Identification of Shigatoxigenic and enteropathogenic Escherichia coli serotypes in healthy young dairy calves in Belgium by recto-anal mucosal swabbing. Vet Sci 7(167): 1–10. doi: 10.3390/vetsci7040167
Indraswari A, Haryanto A, Suardana IW, Widiasih DA. 2021. Isolation and detection of four major virulence genes in O157:H7 and non-O157 E. coli from beef at Yogyakarta Special Province, Indonesia. J Anim Heal Prod In press.
Iowa State University Center for Food Security and Public Health (CFSPH), "Enterohemorrhagic Escherichia coli and other E. coli causing hemolytic uremic syndrome" Center for Food Security and Public Health Technical Factsheets 61. Available online: https://lib.dr.iastate.edu/cfsph_factsheets/61 .
Jafari A, Aslani MM, Bouzari S. 2012. Escherichia coli: a brief review of diarrheagenic pathotypes and their role in diarrheal diseases in Iran. Iran J Microbiol 4(3): 102–17.
Janda JM, Abbott SL. 2007. 16S rRNA gene sequencing for bacterial identification in the diagnostic laboratory: pluses, perils, and pitfalls. J Clin Microbiol 45(9): 2761–4. doi: 10.1128/JCM.01228-07.
Jenkins C, Ling CL, Ciesielczuk HL, Lockwood J, Hopkins S, McHugh TD, et al. 2012. Detection and identification of bacteria in clinical samples by 16S rRNA gene sequencing: comparison of two different approaches in clinical practice. J Med Microbiol 61: 483–8. doi: 10.1099/jmm.0.030387-0.
Lima CM, Souza IEGL, dos Santos Alves T, Leite CC, Evangelista-Barreto NS, de Castro Almeida RC. 2017. Antimicrobial resistance in diarrheagenic Escherichia coli from ready-to-eat foods. J Food Sci Technol 54(11): 3612–9. doi: 10.1007/s13197-017-2820-4.
Magray MSUD, Kumar A, Rawat AK, Srivastava S. 2011. Identification of Escherichia coli through analysis of 16S rRNA and 16S-23S rRNA internal transcribed spacer region sequences. Bioinformation 6(10): 370–1. doi: 10.6026/97320630006370.
Mayer CL, Leibowitz CS, Kurosawa S, Stearns-kurosawa DJ. 2012. Shiga toxins and the pathophysiology of hemolytic uremic syndrome in humans and animals. Toxins (Basel) 4: 1261–87. doi: 10.3390/toxins4111261.
Motto DG, Chauhan AK, Zhu G, Homeister J, Lamb CB, Desch KC, et al. 2005. Shigatoxin triggers thrombotic thrombocytopenic purpura in genetically susceptible ADAMTS13-deficient mice. J Clin Invest 115(10): 2752–2761. doi: 10.1172/JCI26007.
Muniesa M, Hammerl JA, Hertwig S, Appel B, Brüssow H. 2012. Shiga toxin-producing Escherichia coli O104:H4: A new challenge for microbiology. Appl Environ Microbiol 78(12): 4065–73. doi: 10.1128/AEM.00217-12.
Nataro JP, Kaper JB. 1998. Diarrheagenic Escherichia coli. Clin Microbiol Rev 11(2): 403–403. doi: 10.1128/CMR.11.2.403.
Navarro-Garcia F. 2014. Escherichia coli O104:H4 pathogenesis: an enteroaggregative E. coli /Shiga toxin-producing E. coli explosive cocktail of high virulence. Microbiol Spectr 2(6): 1–19. doi: 0.1128/microbiolspec.ehec-0008-2013.
Nei M. 1972. Genetic distance between populations. Am Nat 106(949): 283–92.
Pangastuti A. 2006. Review: definisi spesies prokaryota berdasarkan urutan basa gen penyandi 16s rRNA dan gen penyandi protein. Biodiversitas 7(3): 292–6. doi: 10.13057/biodiv/d070319.
Patel J. 2001. 16S rRNA gene sequencing for bacterial pathogen identification in the clinical laboratory. Mol Diagnosis 6(4): 313–21. doi: 10.1054/modi.2001.29158.
Persad AK, Lejeune J. 2018. A review of current research and knowledge gaps in the epidemiology of Shiga toxin-producing Escherichia coli and Salmonella spp. in Trinidad and Tobago. Vet Sci 5(42): 1–9. doi: 10.3390/vetsci5020042.
Rahmani S, Mosavp M, Rezaeej A. 2006. Detection of bacteria by amplifying the 16S rRNA gene with universal primers and RFLP. Med J Islam Repub Iran 19(4): 333–8.
Rinanda T. 2011. Analisis sekuensing 16S rRNA di bidang mikrobiologi. J Kedokt Syiah Kuala 3: 172–177.
Sari DY, Pisestyani H, Lukman DW. 2020. Antibiotic resistance in Escherichia coli isolated from döner kebab sold in Dramaga Bogor, Indonesia. Adv Anim Vet Sci 8(3): 278–84. Doi: 10.17582/journal.aavs/2020/8.3.278.284.
Soepranianondo K, Wardhana DK, Budiarto, Diyantoro. 2019. Analysis of bacterial contamination and antibiotic residue of beef meat from city slaughterhouses in East Java Province, Indonesia. Vet World 12(2): 243–8. doi: 14202/vetworld.2019.243-248.
Srinivasan R, Karaoz U, Volegova M, MacKichan J, Kato-Maeda M, Miller S, et al. 2015. Use of 16S rRNA gene for identification of a broad range of clinically relevant bacterial pathogens. PLoS One 10(2): 1–22. doi: 10.1371/journal.pone.0117617.
Suardana IW, Artama WT, Asmara W, Daryono BS. 2010. Identifikasi Escherichia coli O157:H7 serta deteksi gen Shiga Like Toxin 1 dan 2 asal feses hewan, daging, Dan feses manusia. J Vet 1(4): 264–270.
Suardana IW, Artama WT, Asmara W, Daryono BS. 2011. Adherence pheno-genotypic of Escherichia coli O157:H7 isolated from beef, feces of cattle, chicken and human. Indones J Biotechnol 16(1): 46–52. doi: 10.22146/ijbiotech.15990.
Suardana IW, Artama WT, Widiasih DA, Ngurah IG, Mahardika K. 2013b. Genetic diversity of Escherichia coli O157:H7 strains using random amplified polymorphic DNA (RAPD). Int Res J Microbiol 4(2): 72–78.
Suardana IW, Pinatih KJP, Ratnawati NLKA, Widiasih DA. 2013a. Protein profile analysis of Escherichia coli O157:H7 from human and animals origin. Int J Curr Microbiol Appl Sci 2(6): 204–214.
Suardana IW, Widiasih DA, Nugroho WS, Wibowo MH, Suyasa IN. 2017. Frequency and risk-factors analysis of Escherichia coli O157:H7 in Bali-cattle. Acta Trop 172: 223–8. doi: 10.1016/j.actatropica.2017.05.019.
Suardana IW. 2014. Analysis of nucleotide sequences of the 16S rRNA gene of novel Escherichia coli strains isolated from feces of human and Bali cattle. J Nucleic Acids 2014: 1–7. doi: 10.1155/2014/475754.
Tan EY, Arifullah M, Soon JM. 2016. Identification of Escherichia coli strains from water vending machines of Kelantan, Malaysia using 16S rRNA gene sequence analysis. Expo Heal 8: 211–216. doi: 10.1007/s12403-016-0194-x.
Tarr PI. 2009. Shiga toxin-associated hemolytic uremic syndrome and thrombotic thrombocytopenic purpura: distinct mechanisms of pathogenesis. Kidney Int 75(112): S29–32. doi: 10.1038/ki.2008.615.
Travert B, Rafat C, Mariani P, Dossier A, Coppo P, Joseph A. 2021. Shiga toxin-associated hemolytic uremic syndrome: specificities of adult patients and implications for critical care management. Toxins (Basel) 13(306): 1–26. doi: https://doi.org/10.3390/toxins13050306.
Vidal A, Aguirre L, Seminati C, Tello M, Redondo N, Martin M, et al. 2020. Antimicrobial resistance profiles and characterization of Escherichia coli strains from cases of neonatal diarrhea in Spanish Pig Farms. Vet Sci 7(48): 1–12. doi: 10.3390/vetsci7020048.
Wang L, Nakamura H, Kage-Nakadai E, Hara-Kudo Y, Nishikawa Y. 2017. Prevalence, antimicrobial resistance and multiple-locus variable-number tandem-repeat analysis profiles of diarrheagenic Escherichia coli isolated from different retail foods. Int J Food Microbiol 249: 44–52. doi: 10.1016/j.ijfoodmicro.2017.03.003.
Wardoyo EH, Suardana IW, Yasa IWPS, Sukrama IDM. 2021. Antibiotics susceptibility of Escherichia coli isolates from clinical specimens before and during COVID-19 pandemic. Iran J Microbiol 13(2): 156–60. doi: 10.18502/ijm.v13i2.5974.
WHO. 2018. Key facts p. 1–7. Available from: https://www.who.int/news-room/fact-sheets/detail/e-coli.
Zulfakar SS, Baharudin N, Bakar NFA. 2017. Bacterial contamination on beef sold at selected wet markets in Selangor and Kuala Lumpur. J Agric Sci 9(13): 89. doi: 10.5539/jas.v9n13p89.

Most read articles by the same author(s)