Genotypes assessment for developing varieties on multi-canopy rice cultivation system

##plugins.themes.bootstrap3.article.main##

MIFTAKHUL BAKHRIR ROZAQ KHAMID
AHMAD JUNAEDI
HENI PURNAMAWATI
HAJRIAL ASWIDINNOOR
LILIK BUDI PRASETYO

Abstract


Abstract. Khamid MBR, Junaedi A, Purnamawati H, Aswidinnoor H, Prasetyo LB. 2023. Genotypes assessment for developing varieties on multi-canopy rice cultivation systemBiodiversitas 24: 1175-1185The Multi-Canopy Rice Cultivation (MCRC) system is a promising cultivation technique that adopts the advantages of cultivar mixture with different canopy vertical dispersion. This system may increase productivity by optimizing vertical space and more efficient input resources. This study aimed to assess the genotype derived from the IPB breeding line for suitability in the MCRC system by combining the short and the tall rice plants. Seed material used four genotypes of the short plants and four genotypes of the tall plants as promising breeding lines of IPB University and three released varieties as the control for productivity evaluation. The resultsshowed morphological and physiological performance as good as in the mono-genotype on the variables of the flag leaf shape, plant height, Soil Plant Analysis Development (SPAD)value, and Crop Growth Rate (CGR). Some genotype combinations achieved productivity higher than 1.00 Land Equivalent Ratio (LER) compared to the mono-genotype, indicating that increasing rice productivity is possible using the MCRC system. The result indicates that the suitable combination of the short-tall genotypes in the MCRC system may be considered to deal with the criteria of plant height, grain yield, and LER in the MCRC, as well as grain index and related grain quality.


##plugins.themes.bootstrap3.article.details##

References
Aschehoug ET, Brooker R, Atwater DZ, Maron JL, Callaway RM. 2016. The mechanisms and consequences of interspecific competition among plants. Annu Rev Ecol Evol Syst 47: 263–281. DOI: 10.1146/annurev-ecolsys-121415-032123.
Ata-Ul-Karim ST, Yao X, Liu X, Cao W, Zhu Y. 2013. Development of critical nitrogen dilution curve of Japonica rice in Yangtze River Reaches. F Crop Res 149: 149–158. DOI: 10.1016/j.fcr.2013.03.012.
Barutcular C, Toptas I, Turkten H, Yildirim M, Koc M. 2015. SPAD greenness to estimate genotypic variation in flag leaf chlorophyll in spring wheat under mediterranean conditions. Turkish J F Crop 20(1): 1–8. DOI: 10.17557/.51440.
Baumont De Oliveira FJ, Ferson S, Dyer R. 2021. A collaborative decision support system framework for vertical farming business developments. Int J Decis Support Syst Technol 13(1): 34–66. DOI: 10.4018/IJDSST.2021010103.
Beacham AM, Vickers LH, Monaghan JM. 2019. Vertical farming: a summary of approaches to growing skywards. J Hortic Sci Biotechnol 94(3):277–283. DOI: 10.1080/14620316.2019.1574214.
Becker M, Angulo C. 2019. The evolution of lowland rice-based production systems in Asia: historic trends, determinants of change, future perspective. 1st ed. Elsevier Inc, Germany. DOI: 10.1016/bs.agron.2019.04.003.
Chang L, Ramireddy E, Schmülling T. 2013. Lateral root formation and growth of Arabidopsis is redundantly regulated by cytokinin metabolism and signalling genes. J Exp Bot 64(16): 5021–5032. DOI: 10.1093/jxb/ert291.
Cheng S, Zhan X, Cao L. 2015. Breeding strategies for increasing yield potential in super hybrid rice. Front Agric Sci Eng 2(4): 277–282. DOI: 10.15302/J-FASE-2015081.
Chu Y, Xu N, Wu Q, Yu B, Li X, Chen R, Huang J. 2019. Rice transcription factor OsMADS57 regulates plant height by modulating gibberellin catabolism. Rice 12(1): 1–14. DOI: 10.1186/s12284-019-0298-6.
Das K, Panda BB, Shaw BP, Das SR, Dash SK, Kariali E, Mohapatra PK. 2018. Grain density and its impact on grain filling characteristic of rice: mechanistic testing of the concept in genetically related cultivars. Sci Rep 8(1): 1–11. DOI: 10.1038/s41598-018-22256-2.
Duan L, Huang C, Chen G, Xiong L, Liu Q, Yang W. 2015. Determination of rice panicle numbers during heading by multi-angle imaging. Crop J 3(3): 211–219. DOI: 10.1016/j.cj.2015.03.002.
Fageria NK, Moreira A, Ferreira EPB, Knupp AM. 2013. Potassium-use efficiency in upland rice genotypes. Commun Soil Sci Plant Anal 44(18): 2656–2665. DOI: 10.1080/00103624.2013.813031.
Gardner FP, Pearce RB, Mitchell RL. 1985. Physiology of Crop Plants. Iowa State University, Ames.
Ghosh M, Swain DK, Jha MK, Tewari VK. 2013. Precision nitrogen management using chlorophyll meter for improving growth, productivity and N use efficiency of rice in subtropical climate. J Agric Sci 5(2): 253-266. DOI: 10.5539/jas.v5n2p253.
Gu J, Chen Y, Zhang H, Li Z, Zhou Q, Yu C, Kong X, Liu L, Wang Z, Yang J. 2017. Canopy light and nitrogen distributions are related to grain yield and nitrogen use efficiency in rice. F Crop Res 206: 74–85. DOI: 10.1016/j.fcr.2017.02.021.
Gu J, Yin X, Stomph TJ, Struik PC. 2014. Can exploiting natural genetic variation in leaf photosynthesis contribute to increasing rice productivity? A simulation analysis. Plant Cell Environ 37(1): 22–34. DOI: 10.1111/pce.12173.
Habimana S, Kalyana Murthy KN, Nanja Reddy YA, Mudalagiriyappa M, Vasantha Kumari R, Hanumanthappa DC. 2019. Impact of aerobic rice-leafy vegetables intercropping systems on weed management. Adv Hortic Sci 33(3): 365–373. DOI: 10.13128/ahs-24266.
Heng Y, Wu C, Long Y, Luo S, Ma J, Chen J, Liu J, Zhang H, Ren Y, Wang M, Tan J, Zhu S, Wang J, Lei C, Zhang X, Guo X, Wang H, Cheng Z,Wan J. 2018. OsALMT7 maintains panicle size and grain yield in rice by mediating malate transport. Plant Cell 30(4): 889–906. DOI: 10.1105/tpc.17.00998.
Hidayah UF, Suwarno WB, Aswidinnoor H. 2022. Genotype by environment analysis on multi?canopy cropping system in rice: Effects of different types of flag leaves. Agron J 1–10. DOI: 10.1002/agj2.20959.
Hidayati N, Triadiati, Anas I. 2016. Photosynthesis and transpiration rates of rice cultivated under the system of rice intensification and the effects on growth and yield. HAYATI J Biosci 23(2): 67–72. DOI: 10.1016/j.hjb.2016.06.002.
Hikosaka K. 2014. Optimal nitrogen distribution within a leaf canopy under direct and diffuse light. Plant Cell Environ 37(9): 2077–2085. DOI: 10.1111/pce.12291.
Hou W, Shen J, Xu W, Khan MR, Wang Y, Zhou X, Gao Q, Murtaza B, Zhang Z. 2021. Recommended nitrogen rates and the verification of effects based on leaf SPAD readings of rice. PeerJ 9: 1–14. DOI: 10.7717/peerj.12107.
Huang R, Jiang L, Zheng J, Wang T, Wang H, Huang Y, Hong Z. 2013. Genetic bases of rice grain shape: so many genes, so little known. Trends Plant Sci 18(4): 218–226. DOI: 10.1016/j.tplants.2012.11.001.
International Rice Research Institute. 2013. Standard Evaluation System (SES) for Rice. 5th ed. IRRI, Manila.
Ji C, Li J, Jiang C, Zhang L, Shi L, Xu F, Cai H. 2022. Zinc and nitrogen synergistic act on root-to-shoot translocation and preferential distribution in rice. J Adv Res 35: 187–198. DOI: 10.1016/j.jare.2021.04.005.
Li R, Li M, Ashraf U, Liu S, Zhang J. 2019. Exploring the relationships between yield and yield-related traits for rice varieties released in china from 1978 to 2017. Front Plant Sci 10: 1-12. DOI: 10.3389/fpls.2019.00543.
Lu H, Qi X, Guo X, Towa JJ, Zhen B, Qiao D, Wang Z, Yang B, Han Y. 2018. Canopy light utilization and yield of rice under rain-catching and controlled irrigation. Water (Switzerland) 10(10): 1–15. DOI: 10.3390/w10101340.
Ma Z, Wu T, Huang K, Jin YM, Li Z, Chen M, Yun S, Zhang H, Yang X, Chen H, Bai H, Du L, Ju S, Guo L, Bian M, Hu L, Du X, Jiang W. 2020. A novel AP2/ERF transcription factor, OsRPH1, negatively regulates plant height in rice. Front Plant Sci 11: 1–15. DOI: 10.3389/fpls.2020.00709.
Makino Y, Hirooka Y, Homma K, Kondo R, Liu TS, Tang L, Nakazaki T, Xu ZJ, Shiraiwa T. 2021. Effect of flag leaf length of erect panicle rice on the canopy structure and biomass production after heading. Plant Prod Sci 00: 1–10. DOI: 10.1080/1343943X.2021.1908152.
Mead R, Willey RW. 1980. The concept of a ‘land equivalent ratio’ and advantages in yields from intercropping. Exp Agric 16(3): 217–228. DOI: 10.1017/S0014479700010978.
Meng T, Wei H, Li X, Dai Q, Huo Z. 2018. A better root morpho-physiology after heading contributing to yield superiority of japonica/indica hybrid rice. F Crop Res 228: 135–146. DOI: 10.1016/j.fcr.2018.08.024.
Mongon J, Konnerup D, Colmer TD, Rerkasem B. 2014. Responses of rice to Fe2+ in aerated and stagnant conditions: growth, root porosity and radial oxygen loss barrier. Funct Plant Biol 41(9): 922–929. DOI: 10.1071/FP13359.
Mugisa I, Fungo B, Kabiri S, Sseruwu G, Kabanyoro R. 2020. Productivity optimization in rice-based intercropping systems of Central Uganda. Int J Environ Agric Biotechnol 5(1): 142–149. DOI: 10.22161/ijeab.51.22.
Nawaz A, Rehman AU, Rehman A, Ahmad S, Siddique KM, Farooq M. 2022. Increasing sustainability for rice production systems. J Cereal Sci 103: 103400. DOI: 10.1016/j.jcs.2021.103400.
Pinta W, Vorasoot N, Jongrungklang N, Saingliw JL, Toojinda T, Sanitchon J. 2018. Root responses in chromosome segment substitution lines of rice ‘KDML105’ under early drought stress. Chil J Agric Res 78(2): 238–254. DOI: 10.4067/S0718-58392018000200238.
Rajput A, Rajput SS, Jha G. 2017. Physiological parameters leaf area index, crop growth rate, relative growth rate and net assimilation rate of different varieties of rice grown under different planting geometries and depths in SRI. Int J Pure Appl Biosci 5(1): 362–367. DOI: 10.18782/2320-7051.2472.
Sandeep K, Nayak MK, Diwan S, Anil K. 2016. Correlation study of growth, development and yield with agrometeorological indices under different planting method correlation study of growth, development and yield with agrometeorological indices under different planting method of rice. Int J Agric Sci 8: 2682–2686.
Singh S, Mohanty DS, Sahu M, Bhaskar N, Verma B. 2020. Evaluation of SPAD meter values for estimating rice nitrogen status. Int J Chem Stud 8(4): 01–05. DOI: 10.22271/chemi.2020.v8.i4a.9947.
Song Q, Zhang G, Zhu XG. 2013. Optimal crop canopy architecture to maximise canopy photosynthetic CO2 uptake under elevated CO2-A theoretical study using a mechanistic model of canopy photosynthesis. Funct Plant Biol 40(2): 109–124. DOI: 10.1071/FP12056.
Tian Z, Li J, He X, Jia X, Yang F, Wang Z. 2017. Grain yield, dry weight and phosphorus accumulation and translocation in two rice (Oryza sativa L.) varieties as affected by salt-alkali and phosphorus. Sustain 9(8): 1–16. DOI: 10.3390/su9081461.
Udhaya ND, Kuzhanthaivel RL. 2015. Analysis of light transmission ratio and yield advantages of pigeonpea in relation to intercrop and different plant population. African J Agric Res 10(8): 731–736. DOI: 10.5897/ajar2014.9122.
Usui Y, Sakai H, Tokida T, Nakamura H, Nakagawa H, Hasegawa T. 2016. Rice grain yield and quality responses to free-air CO2 enrichment combined with soil and water warming. Glob Chang Biol 22(3): 1256–1270. DOI: 10.1111/gcb.13128.
Wang C, Yan Z, Wang Z, Batool M, El-Badri AM, Bai F, Li Z, Wang B, Zhou G, Kuai J. 2021. Subsoil tillage promotes root and shoot growth of rapeseed in paddy fields and dryland in Yangtze River Basin soils. Eur J Agron 130: 126351. DOI: 10.1016/j.eja.2021.126351.
Wang J xu, Sun J, Li C xin, Liu H long, Wang J guo, Zhao H wei, Zou D tang. 2016. Genetic dissection of the developmental behavior of plant height in rice under different water supply conditions. J Integr Agric 15(12): 2688. DOI: 10.1016/S2095-3119(16)61427-2.
Wang X, Liu G, Wang Z, Chen S, Xiao Y, Yu C. 2019. Identification and application of major quantitative trait loci for panicle length in rice (Oryza sativa) through single-segment substitution lines. Plant Breed 138(3): 299–308. DOI: 10.1111/pbr.12687.
Wei H he, Yang Y lin, Shao X yu, Shi T yi, Meng T yao, Lu Y, Tao Y, Li X yue, Ding E hao, Chen Y long, Dai Q gen. 2020. Higher leaf area through leaf width and lower leaf angle were the primary morphological traits for yield advantage of japonica/indica hybrids. J Integr Agric 19(2): 483–494. DOI: 10.1016/S2095-3119(19)62628-6.
Wei H, Hu L, Zhu Y, Xu D, Zheng L, Chen Z, Hu Y, Cui P, Guo B, Dai Q, Zhang H. 2018. Different characteristics of nutrient absorption and utilization between inbred japonica super rice and inter-sub-specific hybrid super rice. F Crop Res 218: 88–96. DOI: 10.1016/j.fcr.2018.01.012.
Widyastuti LPY, Suwarno WB, Aswidinnoor H. 2020. Genotype by environment analysis on multi-canopy cropping system towards vertical harvest space in rice. Agron J 112(6): 4568–4577. DOI: 10.1002/agj2.20405.
Wu J, Qi Y, Hu G, Li J, Li Z, Zhang H. 2017. Genetic architecture of flag leaf length and width in rice (Oryza sativa L.) revealed by association mapping. Genes and Genomics 39(3): 341–352. DOI: 10.1007/s13258-016-0501-8.
Xin W, Liu H, Zhao H, Wang J, Zheng H, Jia Y, Yang L, Wang X, Li J, Li X, Lei L, Zou D. 2021. The response of grain yield and root morphological and physiological traits to nitrogen levels in paddy rice. Front Plant Sci 12: 1–15. DOI: 10.3389/fpls.2021.713814.
Yang H, Yang J, Lv Y, He J. 2014. SPAD values and nitrogen nutrition index for the evaluation of rice nitrogen status. Plant Prod Sci 17(1): 81–92. DOI: 10.1626/pps.17.81.
Yuan Z, Cao Q, Zhang K, Ata-Ul-Karim ST, Tan Y, Zhu Y, Cao W, Liu X. 2016. Optimal leaf positions for SPAD meter measurement in rice. Front Plant Sci 7: 1–10. DOI: 10.3389/fpls.2016.00719.
Zhai L, Wang F, Yan A, Liang C, Wang S, Wang Y, Xu J. 2020. Pleiotropic effect of GNP1 underlying grain number per panicle on sink, source and flow in rice. Front Plant Sci 11: 1–13. DOI: 10.3389/fpls.2020.00933.
Zhang X cui, Lu C gen, HU N, Yao K min, Zhang Q jun, Dai Q gen. 2013. Simulation of canopy leaf inclination angle in rice. Rice Sci 20(6): 434–441. DOI: 10.1016/S1672-6308(13)60161-4.
Zhang Y, Yu C, Lin J, Liu J, Liu B, Wang J, Huang A, Li H, Zhao T. 2017. OsMPH1 regulates plant height and improves grain yield in rice. PLoS One 12(7): 1–17. DOI: 10.1371/journal.pone.0180825.
Zhao B, Liu Zhandong, Ata-Ul-Karim ST, Xiao J, Liu Zugui, Qi A, Ning D, Nan J, Duan A. 2016. Rapid and nondestructive estimation of the nitrogen nutrition index in winter barley using chlorophyll measurements. F Crop Res 185: 59–68. DOI: 10.1016/j.fcr.2015.10.021.
Zhao H, Mo Z, Lin Q, Pan S, Duan M, Tian H, Wang S, Tang X. 2020. Relationships between grain yield and agronomic traits of rice in southern China. Chil J Agric Res 80(1): 72–79. DOI: 10.4067/s0718-58392020000100072.
Zhao SQ, Xiang JJ, Xue HW. 2013. Studies on the rice leaf inclination1 (LC1), an IAA-amido synthetase, reveal the effects of auxin in leaf inclination control. Mol Plant 6(1): 174–187. DOI: 10.1093/mp/sss064.
Zhou C, Huang Y, Jia B, Wang S, Dou F, Samonte SOPB, Chen K, Wang Y. 2019. Optimization of nitrogen rate and planting density for improving the grain yield of different rice genotypes in Northeast China. Agronomy 9(9): 1-18. DOI: 10.3390/agronomy9090555.
Zhu G, Ren Z, Liu Y, Lu F, Gu L, Shi Y, Liu J, Zhou G, Nimir NEA, Mohapatra PK. 2020. Optimization of leaf properties and plant phenotype through yield-based genetic improvement of rice over a period of seventy years in the Yangtze River Basin of China. Food Energy Secur 9(3): 1–15. DOI: 10.1002/fes3.223.
Zhu Y, Li T, Xu J, Wang J, Wang L, Zou W, Zeng D, Zhu L, Chen G, Hu J, Gao Z, Dong G, Ren D, Shen L, Zhang Q, Guo L, Hu S, Qian Q, Zhang G. 2020. Leaf width gene LW5/D1 affects plant architecture and yield in rice by regulating nitrogen utilization efficiency. Plant Physiol Biochem 157: 359–369. DOI: 10.1016/j.plaphy.2020.10.035.

Most read articles by the same author(s)