Phytochemical screening, phenolic and flavonoid content, and antioxidant activity of Rhizophoraceae methanol extracts from Langsa, Aceh, Indonesia

##plugins.themes.bootstrap3.article.main##

INDRIATY
DJUFRI
BINAWATI GINTING
KARTINI HASBALLAH

Abstract

Abstract. Indriaty, Djufri, Ginting B, Hasballah K. 2023. Phytochemical screening, phenolic and flavonoid content, and antioxidant activity of Rhizophoraceae methanol extracts from Langsa, Aceh, Indonesia. Biodiversitas 24: 2865-2876. Bruguiera cylindrica (L.) Blume,Bruguiera gymnorrhiza (L.) Lam., Ceriops decandra (Griff.) Ding Hou, Rhizophora apiculate Blume, and Rhizophora mucronata Lam. are mangrove plant species belonging to Rhizophoraceae that have been used as medicinal plants. Studies on phytochemical screening and bioactivity of Rhizophoraceae mangrove plants from the Aceh region are still limited. This study aimed to analyze the chemical compounds in Rhizophoraceae from Aceh and determine total phenolic content (TPC), flavonoid content (TFC), and antioxidant activity. The chemical compounds were determined using qualitative assay, TLC, and Gas Chromatography-Mass Spectrophotometry (GC-MS). The antioxidant activity was tested against 2,2-diphenyl-1-picrylhydrazyl (DPPH). Twenty extracts from various plant parts of Rhizophoraceae (roots, bark, leaves, and fruit/hypocotyl) were used in this study. The phytochemical screening of Rhizophoraceae plants revealed the presence of alkaloids, flavonoids, phenolics (tannins), terpenoids, steroids, and saponins. The highest TPC content was obtained from the bark of R. mucronata (484.39 mg GAE/g extract). Furthermore, the highest TFC was found in the leaves of R. apiculata ( 15.23 mg QE/g extract). Nineteen extracts had very high antioxidant activity (IC50: 2.35 ± 0.01 - 29.84 ± 0.19 µg/mL). The bark and roots of C. decandra had the most potent antioxidant activity (IC50: 2.35 0.01 and 3.23 0.01 µg/mL, respectively). The GC-MS revealed the presence of pyrocatechol (15.85%), antiarol (1.44%), and hexadecanoic acid (1.69%), that act as antioxidants. Therefore, it can be concluded that the Rhizophoraceae methanol extract contains phenols in the stem bark and flavonoids in the leaves with very high antioxidant activity as a good source of natural ingredients for future pharmaceutical product development. It is highly recommended to do further research to obtain pure compounds from these plants.

##plugins.themes.bootstrap3.article.details##

References
Adhikari, A., Ray, M., Das, A. K., & Sur, T. K. (2017). Antidiabetic and antioxidant activity of Rhizophora mucronata leaves (Indian Sundarban Mangrove): an in vitro and in vivo study. An International Quarterly Journal of Research in Ayurveda, 37(1), 76–81. https://doi.org/10.4103/ayu.AYU_182_15
Agati, G., Azzarello, E., Pollastri, S., & Tattini, M. (2012). Flavonoids as antioxidants in plants?: location and functional significance. Plant Science, 196, 67–76. https://doi.org/10.1016/j.plantsci.2012.07.014
Agati, G., Matteini, P., Goti, A., & Tattini, M. (2007). Chloroplast-located flavonoids can scavenge singlet oxygen. New Phytologist, 174, 77–89. https://doi.org/10.1111/j.1469-8137.2007.01986.x
Alhdad, G. M., Seal, C. E., Al-Azzawi, M. J., & Flowers, T. J. (2013). The effect of combined salinity and waterlogging on the halophyte Suaeda maritima: The role of antioxidants. Environmental and Experimental Botany, 87, 120–125. https://doi.org/10.1016/j.envexpbot.2012.10.010
Andreu, L., Nuncio-Jáuregui, N., Carbonell-Barrachina, Á. A., Legua, P., & Hernández, F. (2018). Antioxidant properties and chemical characterization of Spanish Opuntia ficus-indica Mill. cladodes and fruits. Journal of the Science of Food and Agriculture, 98(4), 1566–1573. https://doi.org/10.1002/jsfa.8628
Aryal, S., Baniya, M. K., Danekhu, K., Kunwar, P., Gurung, R., & Koirala, N. (2019). Total phenolic content, flavonoid content and antioxidant potential of wild vegetables from western Nepal. Plants, 8(96), 1–12. https://doi.org/10.3390/plants8040096
Bandaranayake, W. M. (2002). Bioactivities, bioactive compounds and chemical constituents of mangrove plants. Wetlands Ecology and Management, 10(6), 421–452. https://doi.org/10.1023/A:1021397624349
Banerjee, D., Chakrabarti, S., Hazra, A. K., Banerjee, S., Ray, J., & Mukherjee, B. (2008). Antioxidant activity and total phenolics of some mangroves in Sundarbans. African Journal of Biotechnology, 7(6), 805–810. https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b%5C&scp=41749086914%5C&origin=inward
Bhatt, S., Puli, L., & Patil, C. R. (2020). Role of reactive oxygen species in the progression of Alzheimer ’ s disease. Drug Discovery Today, 00(00), 1–10. https://doi.org/10.1016/j.drudis.2020.12.004
Bibi, S. N., Fawzi, M. M., Gokhan, Z., Rajesh, J., Nadeem, N., Rengasamy Kannan, R. R., Albuquerque, R. D. D. G., & Pandian, S. K. (2019). Ethnopharmacology, Phytochemistry, and Global Distribution of Mangroves-A Comprehensive Review. Marine Drugs, 17(4), 1–82. https://doi.org/10.3390/md17040231
Bonventre, J. A. (2014). Solvents. In Encyclopedia of Toxicology (Vol. 4, pp. 356–357). Elsevier. https://doi.org/10.1016/B978-0-12-386454-3.01063-0
Celeiro, M., Lamas, J. P., Arcas, R., & Lores, M. (2019). Antioxidants profiling of by-products from eucalyptus greenboards manufacture. Antioxidants, 8(8), 1–16. https://doi.org/10.3390/antiox8080263
Chik, S. C. C., Or, T. C. T., Luo, D., Yang, C. L. H., & Lau, A. S. Y. (2013). Pharmacological effects of active compounds on neurodegenerative disease with gastrodia and uncaria decoction, a commonly used poststroke decoction. The Scientific World Journal, 2013, 1–22. https://doi.org/10.1155/2013/896873
Costa, M., Sezgin-bayindir, Z., Losada-barreiro, S., Paiva-martins, F., Saso, L., & Bravo-d, C. (2021). Polyphenols as antioxidants for extending food shelf-life and in the prevention of health diseases?: encapsulation and interfacial phenomena. Biomedicines, 9(1909), 1–38. https://doi.org/10.3390/biomedicines9121909
Cutrim, C. S., & Cortez, M. A. S. (2018). A review on polyphenols: classification, beneficial effects and their application in dairy products. International Journal of Dairy Technology, 71(3), 564–578. https://doi.org/10.1111/1471-0307.12515
de la Rosa, L. A., Moreno-Escamilla, J. O., Rodrigo-García, J., & Alvarez-Parrilla, E. (2018). Phenolic compounds. In E. M. Yahia (Ed.), Postharvest Physiology and Biochemistry of Fruits and Vegetables (Postharves, pp. 253–271). Elsevier Inc. https://doi.org/10.1016/j.foodchem.2004.02.051
Dhanani, T., Shah, S., Gajbhiye, N. A., & Kumar, S. (2017). Effect of extraction methods on yield, phytochemical constituents and antioxidant activity of Withania somnifera. Arabian Journal of Chemistry, 10, S1193–S1199. https://doi.org/10.1016/j.arabjc.2013.02.015
Dias, V., Junn, E., & Mouradian, M. M. (2014). The role of oxidative stress in Parkinson’s disease vera. Journal Parkinsons, 3(4), 461–491. https://doi.org/10.3233/JPD-130230.The
Djiogue, S., Halabalaki, M., Njamen, D., Kretzschmar, G., Lambrinidis, G., Hoepping, J., Raffaelli, F. M., Mikros, E., Skaltsounis, A. L., & Vollmer, G. (2014). Erythroidine alkaloids: A novel class of phytoestrogens. Planta Medica, 80(11), 861–869. https://doi.org/10.1055/s-0034-1382861
Falleh, H., Jalleli, I., Ksouri, R., Boulaaba, M., Guyot, S., Magné, C., & Abdelly, C. (2012). Effect of salt treatment on phenolic compounds and antioxidant activity of two Mesembryanthemum edule provenances. Plant Physiology and Biochemistry, 52, 1–8. https://doi.org/10.1016/j.plaphy.2011.11.001
Fang, C., Gu, L., Smerin, D., Mao, S., & Xiong, X. (2017). Review Article The Interrelation between Reactive Oxygen Species and Autophagy in Neurological Disorders. Oxidative Medicine and Cellular Longevity, 2017, 1–16. https://doi.org/10.1155/2017/8495160
Flieger, J., Flieger, W., & Baj, J. (2021). Antioxidants?: Classification , Natural Sources , Activity / Capacity.
Gašparovi?, A. ?. (2020). Free radical research in cancer. Antioxidants, 9(2), 10–13. https://doi.org/10.3390/antiox9020157
Ginting, B., Mustanir, Nurdin, Maulidna, Murniana, & Safrina. (2021). Evaluation of antioxidant and anticancer activity of myristica fragrans houtt. bark. Pharmacognosy Journal, 13(3), 780–786. https://doi.org/10.5530/pj.2021.13.99
Gupta, A., Naraniwal, M., & Kothari, V. (2012). Modern extraction methods for preparation of bioactive plant extracts. International Journal of Applied and Natural Sciences, 1(1), 8–26.
Hamilton, S. E., & Casey, D. (2016). Creation of a high spatio-temporal resolution global database of continuous mangrove forest cover for the 21st century (CGMFC-21). Global Ecol. Biogeogr., 25(6), 729–738. https://doi.org/10.1111/geb.12449
Hanani, E. (2014). Phytochemical analysis. penerbit Buku Kedokteran EGC.
Haq, Mi., Sani, W., Hossain, A. B. M. S., Taha, R. M., & Monneruzzaman, K. M. (2011). Total phenolic contents, antioxidant and antimicrobial activities of Bruguiera gymnorrhiza. Journal of Medicinal Plants Research, 5(17), 4112–4118. https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b%5C&scp=80052857921%5C&origin=inward
Heinrich, M., Mah, J., & Amirkia, V. (2021). Alkaloids used as medicines: Structural phytochemistry meets biodiversity—An update and forward look. Molecules, 26(7), 1–18. https://doi.org/10.3390/molecules26071836
Hendrawan, A., Mohamad, S., & Listianingrum, W. (2021). Application of Soga Tingi (Ceriops tagal) as an alternative eco-friendly textile color. In Dynamics of Industrial Revolution 4.0: Digital Technology Transformation and Cultural Evolution (pp. 143–146). Taylor & Francis group. https://doi.org/10.1201/9781003193241-26
Hilmi, E., Sari, L. K., Siregar, A. S., Sulistyo, I., Samudra, S. R., & Prayogo, N. A. (2021). Tannins in mangrove plants in Segara Anakan Lagoon , Central Java , Indonesia. Biodiversitas, 22(8), 3508–3516. https://doi.org/10.13057/biodiv/d220850
Hossain, H., Moniruzzaman, S., Nimmi, I., Kawsar, H., Hossain, A., Islam, A., & Jahan, I. A. (2011). Anti-inflammatory and antioxidant activities of the ethanolic extract of Ceriops decandra ( Griff .) Ding Hou bark. Orient Pharm Exp Med, 11, 215–220. https://doi.org/10.1007/s13596-011-0037-z
Indriaty, I., Ginting, B., Hasballah, K., & Djufri. (2022). Assessment cytotoxic assay of Rhizophora plants mangrove using brine shrimp (Artemia salina L) model. IOP Conference Series: Earth and Environmental Science, 951(1). https://doi.org/10.1088/1755-1315/951/1/012070
Iswahyudi, I., Kusmana, C., Hidayat, A., & Noorachmat, B. P. (2020). Environment biophysical of mangrove forest in Langsa City, Aceh. Journal of Natural Resources and Environmental Management, 10(1), 98–110. https://doi.org/10.29244/jpsl.10.1.98-110
Jawala, E. O., Sawiji, R. T., & NilaYuliawati, A. (2020). Phytochemical Screening AndThin-Layer Chromatographic Analysis OfEthanol Extract Hylocereus polyrhizus Peel. Indonesian Journal of Pharmacy and Natural Product, 3(1), 45–58.
Kosobutskii, V. S. (2014). Pyrocatechol and its derivatives as antioxidants and prooxidants. Russian Journal of General Chemistry, 84(5), 839–842. https://doi.org/10.1134/S1070363214050090
Krishnamoorthy, M., Sasikumar, J. M., Shamna, R., Pandiarajan, C., Sofia, P., & Nagarajan, B. (2011). Antioxidant activities of bark extract from mangroves , Bruguiera cylindrica ( L .) Blume and Ceriops decandra Perr. 43(5). https://doi.org/10.4103/0253-7613.84972
Kusmana, C., & Hikmat, A. (2015). The Biodiversity of flora in Indonesia. Journal of Natural Resources and Environmental Management, 5(2), 187–198. https://doi.org/10.19081/jpsl.5.2.187
Lobo, V., Patil, A., Phatak, A., & Chandra, N. (2010). Free radicals , antioxidants and functional foods?: Impact on human health. Pharmacognosy Review, 4(8), 118–126. https://doi.org/10.4103/0973-7847.70902
Loo, A. Y., Jain, K., & Darah, I. (2008). Food Chemistry Antioxidant activity of compounds isolated from the pyroligneous acid , Rhizophora apiculata. 107, 1151–1160. https://doi.org/10.1016/j.foodchem.2007.09.044
Lopes, M., Sanches-silva, A., Castilho, M., & Cavaleiro, C. (2021). Halophytes as source of bioactive phenolic compounds and their potential applications. Critical Reviews in Food Science and Nutrition, 0(0), 1–24. https://doi.org/10.1080/10408398.2021.1959295
Malik, N. H., Zin, Z. M., Razak, S. B. A., Ibrahim, K., & Zainol, M. K. (2017). Antioxidative activities and flavonoids contents in leaves of selected mangrove species in Setiu wetlands extracted using different solvents. Journal of Sustainability Science and Management, 3(Special Issue), 14–22.
Mansouri, A., Embarek, G., Kokkalou, E., & Kefalas, P. (2005). Phenolic profile and antioxidant activity of the Algerian ripe date palm fruit (Phoenix dactylifera). Food Chemistry, 89(3), 411–420. https://doi.org/10.1016/j.foodchem.2004.02.051
Medini, F., Fellah, H., Ksouri, R., & Abdelly, C. (2014). Total phenolic, flavonoid and tannin contents and antioxidant and antimicrobial activities of organic extracts of shoots of the plant Limonium delicatulum. Journal of Taibah University for Science, 8(3), 216–224. https://doi.org/10.1016/j.jtusci.2014.01.003
Meot-duros, L., & Magné, C. (2008). Effect of salinity and chemical factors on seed germination in the halophyte Crithmum maritimum L . Plant Soil, 2008(313), 83–87. https://doi.org/10.1007/s11104-008-9681-6
Mishra, A., & Tanna, B. (2017). Halophytes?: potential resources for salt stress tolerance genes and promoters. Frontiers in Plant Science, 8(May), 1–10. https://doi.org/10.1016/j.foodchem.2004.02.051
Molyneux P. (2004). The use of the stable free radical diphenylpicryl-hydrazyl (DPPH) for estimating anti-oxidant activity. Songklanakarin Journal of Science and Technology, 26(May), 211–219.
Mwamatope, B., Tembo, D., Chikowe, I., Kampira, E., & Nyirenda, C. (2020). Total phenolic contents and antioxidant activity of Senna discolor herbal plants. Scientific African, 9, 1–7. https://doi.org/10.1016/j.sciaf.2020.e00481
Neimsuwan, T., Siramon, P., Hengniran, P., & Punsuvon, V. (2017). Tannin extraction of Rhizophora bark from residual charcoal production. Journal of Tropical Forest Research, 1(1), 36–50.
Nowak, W. N., Deng, J., Ruan, X. Z., & Xu, Q. (2017). Reactive Oxygen Species Generation and Atherosclerosis. Arterioscler Thromb Vasc Biol, 37(5), 41–53. https://doi.org/10.1161/ATVBAHA.117.309228
Nuraskin, C., Marlina, Idroes, R., Soraya, C., & Djufri. (2020). Identification of secondary metabolite of laban extract (Vitex pinnata L) from geothermal areas and non geothermal of Agam Mountains Aceh Besar, Aceh province, Indonesia. Rasayan Journal of Chemistry, 13(1), 18–23. https://doi.org/10.31788/RJC.2020.1315434
Ota, A., & Ulrih, N. P. (2017). An overview of herbal products and secondary metabolites used for management of type two diabetes. Frontiers in Pharmacology, 8(JUL), 1–14. https://doi.org/10.3389/fphar.2017.00436
Panche, A. N., Diwan, A. D., & Chandra, S. R. (2016). Flavonoids: an overview. Journal of Nutritional Science, 5(e47), 1–15. https://doi.org/10.1017/jns.2016.41
Panth, N., Paudel, K. R., & Parajuli, K. (2016). Reactive Oxygen Species?: A Key Hallmark of Cardiovascular Disease. Advances in Medicine, 2016, 1–12. https://doi.org/10.1155/2016/9152732
Pham-huy, L. A., He, H., & Pham-huy, C. (2008). Free radicals , antioxidants in disease and health. Intenational Journal of Biomedical Science, 4(2), 89–96.
Phuyal, N., Jha, P. K., Raturi, P. P., & Rajbhandary, S. (2020). Total phenolic, flavonoid contents, and antioxidant activities of fruit, seed, and bark extracts of Zanthoxylum armatum DC. The Scientific World Journal, 2020(3), 1–7. https://doi.org/10.1155/2020/8780704
Pi?tczak, E., Dybowska, M., P?uciennik, E., Ko?la, K., Kolniak?Ostek, J., & Kalinowska?Lis, U. (2020). Identification and accumulation of phenolic compounds in the leaves and bark of Salix alba (L.) and their biological potential. Biomolecules, 10(1391), 1–17. https://doi.org/10.3390/biom10101391
Podolak, I., Galanty, A., & Sobolewska, D. (2010). Saponins as cytotoxic agents: a review. Phytochemistry Reviews, 9(3), 425–474. https://doi.org/10.1007/s11101-010-9183-z
Prasad, S., Gupta, S. C., & Tyagi, A. K. (2017). Reactive oxygen species (ROS) and cancer: Role of antioxidative nutraceuticals. Cancer Letters, 387, 95–105. https://doi.org/10.1016/j.canlet.2016.03.042
Pringgenies, D., Pratiwi, A. H. D., Yudiati, E., Azizah, R., & Susilo, E. S. (2017). Biopigment tracing of mangrove Rhizophora mucrota leaf and bark waste and its application for batik dyeing by multiple fixations. Annual Basic Science International Conference, 1, 108–111.
Qasim, M., Abideen, Z., Adnan, M. Y., Gulzar, S., Gul, B., Rasheed, M., & Khan, M. A. (2017). Antioxidant properties, phenolic composition, bioactive compounds and nutritive value of medicinal halophytes commonly used as herbal teas. South African Journal of Botany, 110(May), 240–250. https://doi.org/10.1016/j.sajb.2016.10.005
Ragavan, P., Saxena, A., Jayaraj, R. S. C., Mohan, P. M., Ravichandran, K., Saravanan, S., & Vijayaraghavan, A. (2016). A review of the mangrove floristics of India. Taiwania, 61(3), 224?242. https://doi.org/10.6165/tai.2016.61.224
Rahman, M., Mostofa, M. G., Keya, S. S., & Siddiqui, N. (2021). Adaptive mechanisms of halophytes and their potential in improving salinity tolerance in plants. International Journal of Molecular Sciences, 22(10733), 1–28. https://doi.org/10.3390/ijms221910733
Rumengan, A. P., Mandiangan, E. S., Tanod, W. A., Paransa, D. S. J., Paruntu, C. P., & Mantiri, D. M. H. (2021). Identification of pigment profiles and antioxidant activity of rhizophora mucronata mangrove leaves origin lembeh, north sulawesi, Indonesia. Biodiversitas, 22(7), 2805–2816. https://doi.org/10.13057/biodiv/d220730
Russo, G., Curcio, F., Bulli, G., Aran, L., Della-morte, D., Testa, G., Cacciatore, F., Bonaduce, D., & Abete, P. (2018). Oxidative stress, aging, and diseases. Clinical Interventions in Aging, 13, 757–772.
Sadeer, N. B. (2019). Untargeted metabolomic profiling, multivariate analysis and biological evaluation of the true mangrove (Rhizophora mucronata lam.). Antioxidants, 8(10). https://doi.org/10.3390/antiox8100489
Santander, C., Vidal, G., Ruiz, A., Vidal, C., & Cornejo, P. (2022). Salinity eustress increases the biosynthesis and accumulation of phenolic compounds that improve the functional and antioxidant quality of Red Lettuce. Agronomy, 12(598), 1–13. https://doi.org/10.3390/agronomy12030598
Shamsuzzaman, M., Kalaiselvi, K., & Prabakaran, M. (2021). Evaluation of antioxidant and anticorrosive activities of Ceriops tagal plant extract. Applied Sciences, 11(21), 1–18. https://doi.org/10.3390/app112110150
Sukweenadhi, J., Yunita, O., Setiawan, F., Kartini, Siagian, M. T., Nggreyni Pratiwi Danduru, & Christina Avanti. (2020). Antioxidant activity screening of seven Indonesian herbal extract. Biodiversitas Journal of Biological Diversity, 21(5), 2062–2067. https://doi.org/10.13057/biodiv/d210532
Tiwari, P., Kumar, B., Kaur, M., Kaur, G., & Kaur, H. (2011). Phytochemical screening and extraction: a review. Internationale Pharmaceutica Sciencia, 1(1), 98–106.
Traber, M. G., & Atkinson, J. (2008). Vitamin E, antioxidant and nothing more. Free Radic Biol Med, 1(43), 4–15. https://doi.org/10.1016/j.freeradbiomed.2007.03.024
Valko, M., Rhodes, C. J., Moncol, J., Izakovic, M., & Mazur, M. (2006). Free radicals , metals and antioxidants in oxidative stress-induced cancer. Chemico-Biological Interactions, 160, 1–40. https://doi.org/10.1016/j.cbi.2005.12.009
Yahya, M., Ginting, B., & Saidi, N. (2021). In-vitro screenings for biological and antioxidant activities of water extract from Theobroma cacao L . Pod Husk?: potential utilization in foods. Molecules, 26(6915), 1–13. https://doi.org/10.3390/molecules26226915
Yang, Y., Fu, C., Zhou, F., Luo, X., Li, J., Zhao, J., He, J., Li, X., & Li, J. (2018). Chemical composition, antioxidant and antitumor activities of sub-fractions of wild and cultivated Pleurotus ferulae ethanol extracts. PeerJ, 2018(12), 1–17. https://doi.org/10.7717/peerj.6097
Zhang, L. (2010). Condensed tannins from mangrove species Kandelia candel and Rhizophora mangle and their antioxidant activity. Molecules, 15(1), 420–431. https://doi.org/10.3390/molecules15010420
Zurba, N., Heriansyah, Islama, D., & Febrina, C. D. (2019). Management of potential carbon absorption in the form of biomass in mangrove ecosystems in Kuala Langsa-Aceh. Journal of Aceh Aquatic Science, 3(1), 347–350. http://utu.ac.id/index.php/jurnal.html.

Most read articles by the same author(s)