Immunomodulatory effects of probiotics isolated from traditional fermented foods and beverages of Sumatra (Indonesia) and synbiotics in mice

##plugins.themes.bootstrap3.article.main##

NUR INDAH PERMATASARI HARAHAP
ERMAN MUNIR
SALOMO HUTAHAEAN

Abstract

Abstract. Harahap NIP, Munir E, Hutahaean S. 2023. Immunomodulatory effects of probiotics isolated from traditional fermented foods and beverages of Sumatra (Indonesia) and synbiotics in mice. Biodiversitas 24: 1157-1162. Traditional Sumatran foods and beverages such as sugar palm sap, dadih, and tempoyak have a higher nutritional value than the original ingredients. Lactic Acid Bacteria (LAB), a group of gut bacteria, is the starter that commonly appeared abundantly during fermentation of these natural products. Probiotics are microorganisms that, when consumed in sufficient amounts, provide health benefits to the host, one of which is immunomodulation. When probiotics are coupled with prebiotics to create a unified product known as synbiotics, their function as immunomodulators improves. The goal of this study is to identify new probiotic candidate LAB strains from traditional Sumatran fermented products in combination with inulin as a prebiotic, that can act as immunomodulators in mice through phagocytosis activity. Eight bacterial isolates encoded as NI01, NI02, NI04, DA01, DA02, TE01, TE02 and TE03 were isolated as LAB strains. Four isolates i.e. NI02, NI04, DA01, and TE02 were identified molecularly as Lactiplantibacillus plantarum, Leuconostoc mesenteroides, Lacticaseibacillus paracasei and Lactiplantibacillus plantarum, respectively which were antagonists to human pathogenic bacteria, Escherichia coli and Staphylococcus aureus. The highest phagocytic activity of macrophages was observed through the administration of synbiotics from DA01 + Inulin at 98%, followed by TE02 (96%), NI04 (95%), and NI02 (92%). The findings of this study demonstrated the potential of LAB strains in traditional fermented Sumatran products as probiotic agents and immunomodulators for future application in the health sector.

##plugins.themes.bootstrap3.article.details##

References
Aritonang SN, Roza E, Yetmaneli, Sandra A, Rizqan. 2022a. Characterization oflactic acid bacteria from buffalo dairy product (dadiah) as potential probiotics. Biodiversitas 23(9): 4418-4423. DOI: 10.13057/biodiv/d230906
Azad MAK, Sarker M, Wan D. 2018. Immunomodulatory effects of probiotics on cytokine profiles. BioMed Res Int 2018: 8063647. DOI: 10.1155/2018/8063647
Bagchi T. 2014. Traditional food & modern lifestyle: Impact of probiotics. Indian J Med Res 140(3): 333-335.
Behnsen J, Deriu E, Sassone-Corsi M, Raffatellu M. 2013. Probiotics: Properties, examples, and specific applications. Cold Spring Harb Perspect Med 3(3): a010074. DOI: 10.1101/cshperspect.a010074
Bodke H, Jogdand S. 2022. Role of probiotics in human health. Cureus 14(11): e31313. DOI: 10.7759/cureus.31313
Cordeiro M, Souza E, Arantes R, Balthazar C, Guimarães J, Scudino H, Silva H, Rocha R, Freitas M, Esmerino E. 2019. Fermented whey dairy beverage offers protection against Salmonella enterica ssp. enterica serovar Typhimurium infection in mice. J Dairy Sci 102(8): 6756-6765. DOI: 10.3168/jds.2019-16340
de Simone C. 2019. The unregulated probiotic market. Clin Gastroenterol Hepatol 17(5): 8099-817. DOI: 10.1016/j.cgh.2018.01.018
Desniar, Rusmana I, Suwanto A, Mubarik NR. 2020. Organic acid produced by lactic acid bacteria from bekasam as food biopreservatives. IOP Conf Ser: Earth Environ Sci 414: 012003. DOI: 10.1088/1755-1315/414/1/012003
Febrianti AN, Suardana IW, Suarsana IN. 2016. Ketahanan bakteri asam laktat (BAL) isolat 9A hasil isolasi dari kolon sapi bali terhadap pH rendah dan natrium deoksikolat (NaDC). Indones Medic Veter 5(5): 415-421. [Indonesian]
Fuller R. 1989. Probiotics in man and animals. J Appl Bacteriol 66(5): 365-378.
Gallega CG, Salminen S. 2016. Novel probiotics and prebiotics: How can they help in human gut microbiota dysbiosis? Appl Food Biotechnol 3(2): 72-81. DOI: 10.22037/afb.v3i2.11276
Han S, Lu Y, Xie J, Fei Y, Zheng G, Wang Z, Liu J, Lv L, Ling Z, Berglund B, Yao M, Li L. 2021. Probiotic gastrointestinal transit and colonization after oral administration: A Long journey. Front Cell Infect Microbiol 11: 609722. DOI: 10.3389/fcimb.2021.609722
Ilyas M, Jabbar A, Bafadal M, Malaka MH, Firdayanti, Sahidin I. 2020. Aktivitas imunomodulator ekstrak etanol spons (Callyspongia sp.) terhadap fagositosis makrofag pada mencit jantan Balb/C. Jurnal Ilmiah Ibnu Sina 5(1): 44-55. DOI: 10.36387/jiis.v5i1.377 [Indonesian]
Ismail YS, Yulvizar C, Mazhitov B. 2018. Characterization of lactic acid bacteria from local cow’s milk kefir. IOP Conf Ser: Earth Environ Sci 130: 012019. DOI: 10.1088/1755-1315/130/1/012019
Jandhyala SM, Talukdar R, Subramanyam C, Vuyyuru H, Sasikala M, Reddy NR. 2015. Role of the normal gut microbiota. World J Gastroenterol 21(29): 8787-8803. DOI: 10.3748/wjg.v21.i29.8787
Khaneghah AM, Abhari K, Es I, Soares MB, Oliveira RBA, Hosseini H, Rezaei M, Balthazar CF, Silva R, Cruz AG, Ranadheera CS, Sant’Ana AS. 2020. Interactions between probiotics and pathogenic microorganisms in hosts and foods: A review. Trends Food Sci Technol 95: 205-218. DOI: 10.1016/j.tifs.2019.11.022
Koirala S, Anal AK. 2021. Probiotics-based foods and beverages as future foods and their overall safety and regulatory claims. Future Foods 3: 100013. DOI: 10.1016/j.fufo.2021.100013
Luan C, Yan J, Jiang N, Zhang C, Geng X, Li Z, Li C. 2022. Leuconostoc mesenteroides LVBH107 antibacterial activity against Porphyromonas gingivalis and anti-inflammatory activity against P. gingivalis lipopolysaccharide-stimulated RAW 264.7 cells. Nutrients 14(13): 2584. DOI: 10.3390/nu14132584
Onda T, Yanagida F, Uchimura T, Tsuji M, Ogino S, Shinohara T, Yokotsuka K. 2002. Widespread distribution of the bacteriocin-producing lactic acid cocci in Miso-paste products. J Appl Microbiol 92: 695-705. DOI: 10.1046/j.1365-2672.2002.01573.x
Roza E, Aritonang SN, Yellita Y, Susanty H, Rizqan, Pratama YE. 2022. Potential of dadiah kapau from Agam District, West Sumatra, Indonesia as asource of probiotics for health. Biodiversitas 23(1): 564-571. DOI: 10.13057/biodiv/d230161
Sharma S, Garg P, Kumar P, Bhatia SK, Kulshrestha S. 2020. Microbial fermentation and its role in quality improvement of fermented foods. Fermentation 6(4): 106. DOI: 10.3390/fermentation6040106
Surono IS. 2016. Ethnic fermented foods and beverages in Indonesia. In: Tamang JP (eds) Ethnic Fermented Foods and Alcoholic Beverages of Asia. Springer, India.
Tamura K, Stecher G, Kumar S. 2021. MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Mol Biol Evol 38(7): 3022-3027. DOI:10.1093/molbev/msab120
Wiertsema SP, van Bergenhenegouwen J, Garssen J, Knippels LMJ. 2021. The interplay between the gut microbiome and the immune system in the context of infectious diseases throughout life and the role of nutrition in optimizing treatment strategies. Nutrients 13(3): 886. DOI: 10.3390/nu13030886
Yahfoufi N, Mallet JF, Graham E, Matar C. 2018. Role of probiotics and prebiotics in immunomodulation. Curr Opin Food Sci 20: 82-91. DOI: 10.1016/j.cofs.2018.04.006
Yao MF, Xie JJ, Du HJ, McClements DJ, Xiao H, Li LJ. 2020. Progress in microencapsulation of probiotics: A Review. Compr Rev Food Sci Food Saf 19(2): 857-874. Doi: 10.1111/1541-4337.12532
Zhang X, Zhivaki D, Lo-Man R. 2017. Unique aspects of the perinatal immune system. Nat Rev Immunol 17(8): 495-507. DOI: 10.1038/nri.2017.54
Zhang Y, Guo M, Zhang H, Wang Y, Li R, Liu Z, Zheng H, You C. 2022. Lactiplantibacillus plantarum ST-III-fermented milk improves autistic-like behaviors in valproic acid-induced autism spectrum disorder mice by altering gut microbiota. Front Nutr 9: 1005308. DOI: 10.3389/fnut.2022.1005308
Zheng D, Liwinski T, Elinay E. 2020. Interaction between microbiota and immunity in health and disease. Cell Res 30(6): 492-506. DOI: 10.1038/s41422-020-0332-7