Short Communication: The potential of soil microbes in the three kerangas forest ecosystems on Belitung Island, Indonesia

##plugins.themes.bootstrap3.article.main##

DINA OKTAVIA
SANTI DWI PRATIWI
DESTY PRATIWI
NADIA NURANIYA KAMALUDIN

Abstract

Abstract. Oktavia D, Pratiwi SD, Pratiwi D, Kamaludin NN. 2023. Short Communication: The potential of soil microbes in the three kerangas forest ecosystems on Belitung Island, Indonesia. Biodiversitas 24: 1895-1899. The biogeochemical cycles on Earth are governed by living creatures, therefore the composition and activity of microbial communities are important ecological issues. In this study, we investigated the abundance of soil microbes randomly existing from the three types of kerangas forest ecosystems (Bukit Peramun, Cendil Kerangas Forest, and Gunung Lumut) in Belitung Island which belongs to the Geosites of Belitong UNESCO Global Geopark. In comparison to the Bukit Peramun and Hutan Cendil habitats, the populations of bacteria and fungus in the Gunung Lumut were greater at 3.11 x 1010 and 1.14 x 105 cfu g-1, respectively. In Gunung Lumut, there was a comparatively high population of soil bacteria. Gunung Lumut is a site where a variety of mosses have taken over and are overpowered by the terrain due to its high humidity and weathered rocks. Generally, under various conditions, a specific function is more likely to be carried out by soils with higher microbial populations. Understanding soil health and agricultural productivity depends on an understanding of the presence of soil bacteria in various types of kerangas forests. Our study aids the Geosites of the Belitong UNESCO World Geopark in ensuring a long-term sustainable ecosystem.

##plugins.themes.bootstrap3.article.details##

References
Bechtaoui, N., Rabiu, M.K., Raklami, A., Oufdou, K., Hafidi, M. & Jemo, M., 2021, ‘Phosphate-Dependent Regulation of Growth and Stresses Management in Plants’, Frontiers in Plant Science, 12(October).
Bending, G.. & Read, D.., 1995, ‘The structure and function of the vegetative mycelium of ectomycorrhizal plants: V. Foraging behaviour and translocation of nutrients from exploited litter’, New Phytologist, 130(3), 401–409.
Bullock JM, Fuentes?Montemayor E, McCarthy B, Park K, Hails RS, Woodcock BA, Watts K, Corstanje R, Harris J. 2022. Future restoration should enhance ecological complexity and emergent properties at multiple scales. Ecography. 2022(4).
Camenzind, T., Hättenschwiler, S., Treseder, K., Lehmann, A. & Rillig, M.., 2017, ‘Nutrient limitation of soil microbial processes in tropical forests’, Ecological Monographs, 88, 4–21.
Carney KM, Matson PA. 2005. Plant communities, soil microorganisms, and soil carbon cycling: Does altering the world belowground matter to ecosystem functioning? Ecosystems. 8(8):928-940.
Cong J, Yang Y, Liu X, Lu H, Liu X, Zhou J, Li D, Yin H, Ding J, Zhang Y. 2015. Analyses of soil microbial community compositions and functional genes reveal potential consequences of natural forest succession. Scientific reports. 5(1):1-11.
Cornelissen, J.H.C., Lang, S.I., Soudzilovskaia, N.A. & During, H.J., 2007, ‘Comparative cryptogam ecology: A review of bryophyte and lichen traits that drive biogeochemistry’, Annals of Botany, 99(5), 987–1001.
Davey, M.L. & Currah, R.S., 2006, ‘Interactions between mosses (Bryophyta) and fungi’, Canadian Journal of Botany, 84(10), 1509–1519.
DeLuca, T.H., Zackrisson, O., Gundale, M.J. & Nilsson, M.C., 2008, ‘Ecosystem feedbacks and nitrogen fixation in boreal forests’, Science, 320(5880), 1181.
Dubey A, Malla MA, Khan F, Chowdhary K, Yadav S, Kumar A, Sharma S, Khare PK, Khan ML. 2019. Soil microbiome: A key player for conservation of soil health under changing climate. Biodiversity and Conservation. 28(8):2405-2429.
Fayiah M, Dong S, Khomera SW, Ur Rehman SA, Yang M, Xiao J. 2020. Status and challenges of qinghai–tibet plateau’s grasslands: An analysis of causes, mitigation measures, and way forward. Sustainability. 12(3):1099.
Frey SD. 2019. Mycorrhizal fungi as mediators of soil organic matter dynamics. Annual Review of Ecology, Evolution, and Systematics. 50(1).
Haryadi D, Wahyudin N. 2018. From charm to sorrow: The dark portrait of tin mining in bangka belitung, indonesia. PEOPLE: International Journal of Social Sciences. 4(1):360-382.
Hindersah, R., Kamaluddin, N.N., Fauzia, S.R., Setiawati, M.R. & Simarmata, T., 2022, ‘Nitrogen-fixing bacteria and organic ameliorant for corn growth and yield increment in Inceptisols’, Journal of Degraded and Mining Lands Management, 9(3), 3445–3452.
Hobara S, Osono T, Hirose D, Noro K, Hirota M, Benner R. 2014. The roles of microorganisms in litter decomposition and soil formation. Biogeochemistry. 118(1):471-486.
Holland-Moritz, H., Stuart, J.E.M., Lewis, L.R., Miller, S.N., Mack, M.C., Ponciano, J.M., McDaniel, S.F. & Fierer, N., 2021, ‘The bacterial communities of Alaskan mosses and their contributions to N2-fixation’, Microbiome, 9(1), 1–14.
Imu, U.C., Purnamasari, A.B. & Liana, A., 2019, ‘Identifikasi Tumbuhan Lumut di Kawasan Wisata Taman Nasional Bantimurung’, Bionature, 20(2), 147.
Ininbergs, K., Bay, G., Rasmussen, U., Wardle, D.A. & Nilsson, M.C., 2011, ‘Composition and diversity of nifH genes of nitrogen-fixing cyanobacteria associated with boreal forest feather mosses’, New Phytologist, 192(2), 507–517.
Karyaningsih, I., 2019, ‘Types of Organisms Decomposers of Soil Pollutants’, Journal Of Forestry And Environment, 1(01), 16–21.
Khatoon H, Solanki P, Narayan M, Tewari L, Rai J, Hina Khatoon C. 2017. Role of microbes in organic carbon decomposition and maintenance of soil ecosystem. International Journal of Chemical Studies. 5(6):1648-1656.
Kopittke PM, Menzies NW, Wang P, McKenna BA, Lombi E. 2019. Soil and the intensification of agriculture for global food security. Environment international. 132:105078.
Kravchenko, A.N., Guber, A.K., Razavi, B.S., Koestel, J., Quigley, M.Y., Robertson, G.P. & Kuzyakov, Y., 2019, ‘Microbial spatial footprint as a driver of soil carbon stabilization’, Nature Communications, 10(1), 1–10.
Lee, K.J.D., Knight, C.D. & Knox, J.P., 2005, ‘Physcomitrella patens: A moss system for the study of plant cell walls’, Plant Biosystems, 139(1), 16–19.
Leppänen, S.M., Salemaa, M., Smolander, A., Mäkipää, R. & Tiirola, M., 2013, ‘Nitrogen fixation and methanotrophy in forest mosses along a N deposition gradient’, Environmental and Experimental Botany, 90, 62–69.
Li, J., Nie, M. & Pendall, E., 2020, ‘Soil physico-chemical properties are more important than microbial diversity and enzyme activity in controlling carbon and nitrogen stocks near Sydney, Australia’, Geoderma, 366(June 2019), 114201.
Liu, Q., Liu, B., Zhang, Y., Hu, T., Lin, Z., Liu, G., ... & Xie, Z., 2019. Biochar application as a tool to decrease soil nitrogen losses (NH 3 volatilization, N2O emissions, and N leaching) from croplands: Options and mitigation strength in a global perspective. Global Change Biology, 25(6), 2077-2093.
Maharani, A. & Murdiyah, S., 2017, ‘Biodiversity of Division Bryophyta (True Moss) in Kapas Biru Waterfall Pronojiwo Lumajang’, Anisa Maharani @ Biodiversity of Division… Bioedukasi, (2), 31–37.
Malhotra, H., Vandana, Sharma, S. & Pandey, R., 2018, ‘Plant nutrients and abiotic stress tolerance’, Plant Nutrients and Abiotic Stress Tolerance, pp. 1–590.
Mastur, Syafaruddin & Syakir, M., 2016, ‘Peran dan Pengelolaan Hara Nitrogen pada Tanaman Tebu Untuk Peningkatan Produktivitas Tebu’, Perspektif, 14(2), 73.
Miller H, Dias K, Hare H, Borton MA, Blotevogel J, Danforth C, Wrighton KC, Ippolito JA, Borch T. 2020. Reusing oil and gas produced water for agricultural irrigation: Effects on soil health and the soil microbiome. Science of the Total Environment. 722:137888.
Moran JA, Barker MG, Moran AJ, Becker P, Ross SM. 2000. A comparison of the soil water, nutrient status, and litterfall characteristics of tropical heath and mixed?dipterocarp forest sites in brunei 1. Biotropica. 32(1):2-13.
Nadeem, M., Wu, J., Ghaffari, H., Kedir, A.J., Saleem, S., Mollier, A., Singh, J. & Cheema, M., 2022, ‘Understanding the Adaptive Mechanisms of Plants to Enhance Phosphorus Use Efficiency on Podzolic Soils in Boreal Agroecosystems’, Frontiers in Plant Science, 13(March), 1–23.
Oktavia D, Setiadi Y, Hilwan I. 2015. The comparison of soil properties in heath forest and post-tin mined land: Basic for ecosystem restoration. Procedia Environmental Sciences. 28:124-131.
Pajares, S. & Bohannan, B.J.M., 2016, ‘Ecology of nitrogen fixing, nitrifying, and denitrifying microorganisms in tropical forest soils’, Frontiers in Microbiology, 7(JUL), 1–20.
Pennekamp F, Griffiths JI, Fronhofer EA, Garnier A, Seymour M, Altermatt F, Petchey OL. 2017. Dynamic species classification of microorganisms across time, abiotic and biotic environments-a sliding window approach. PLoS One. 12(5):e0176682.
Prasad S, Malav LC, Choudhary J, Kannojiya S, Kundu M, Kumar S, Yadav AN. 2021. Soil microbiomes for healthy nutrient recycling. Current trends in microbial biotechnology for sustainable agriculture. Springer. p. 1-21.
Proctor J. 1999. Heath forests and acid soils. Botanical Journal of Scotland. 51(1):1-14.
Reed, S.C., Cleveland, C.C. & Townsend, A.R., 2013, ‘Relationships among phosphorus, molybdenum and free-living nitrogen fixation in tropical rain forests: Results from observational and experimental analyses’, Biogeochemistry, 114(1–3), 135–147.
Rice, A. V., Tsuneda, A. & Currah, R.S., 2006, ‘In vitro decomposition of Sphagnum by some microfungi resembles white rot of wood’, FEMS Microbiology Ecology, 56(3), 372–382.
Rousk, K., Jones, D.L. & DeLuca, T.H., 2013, ‘Moss-cyanobacteria associations as biogenic sources of nitrogen in boreal forest ecosystems’, Frontiers in Microbiology, 4(JUN), 1–10.
Schmidt, M.W.I., Torn, M.S., Abiven, S., Dittmar, T., Guggenberger, G., Janssens, I.A., Kleber, M., Kögel-Knabner, I., Lehmann, J., Manning, D.A.C., Nannipieri, P., Rasse, D.P., Weiner, S. & Trumbore, S.E., 2011, ‘Persistence of soil organic matter as an ecosystem property’, Nature, 478(7367), 49–56.
Sorensen, P.L., Lett, S. & Michelsen, A., 2012, ‘Moss-specific changes in nitrogen fixation following two decades of warming, shading, and fertilizer addition’, Plant Ecology, 213(4), 695–706.
Seaton, F.M., George, P.B., Lebron, I., Jones, D.L., Creer, S. and Robinson, D.A., 2020. Soil textural heterogeneity impacts bacterial but not fungal diversity. Soil Biology and Biochemistry, 144, p.107766.
Shay, P.E., Winder, R.S. and Trofymow, J.A., 2015. Nutrient-cycling microbes in coastal Douglas-fir forests: regional-scale correlation between communities, in situ climate, and other factors. Frontiers in microbiology, 6, p.1097.
Startsev, N.A., Lieffers, V.J., Landhäusser, S.M. & Velazquez-Martinez, A., 2008, ‘N-transfer through aspen litter and feather moss layers after fertilization with ammonium nitrate and urea’, Plant and Soil, 311(1–2), 51–59.
Turley NE, Bell?Dereske L, Evans SE, Brudvig LA. 2020. Agricultural land?use history and restoration impact soil microbial biodiversity. Journal of Applied Ecology. 57(5):852-863.
Verhoeven, J.T.A. & Liefveld, W.M., 1997, ‘ecological significance of organochemical in Sphagnum’, Acta Botanica Neerlandica, 46(2), 117–130.
White, P.J. & Veneklaas, E.J., 2012, ‘Nature and nurture: The importance of seed phosphorus content’, Plant and Soil, 357(1), 1–8.
Windadri, F.I., 2012, ‘Keragaman Lumut pada Marga Pandanus di Taman Nasional Ujung Kulon, Banten’, Jurnal Natur Indonesia, 11(2), 89.
Zechmeister-Boltenstern S, Keiblinger KM, Mooshammer M, Peñuelas J, Richter A, Sardans J, Wanek W. 2015. The application of ecological stoichiometry to plant–microbial–soil organic matter transformations. Ecological Monographs. 85(2):133-155.

Most read articles by the same author(s)