Short Communication: Calcareous nannofossil assemblages and age determination in Leuwi Kenit, Ciletuh Palabuhanratu Geopark, Indonesia

##plugins.themes.bootstrap3.article.main##

SANTI DWI PRATIWI
https://orcid.org/0000-0002-0922-5914
NURDRAJAT
FITTRIE MEYLLIANAWATY PRATIWY
SHUN CHIYONOBU

Abstract

Abstract. Pratiwi SD, Nurdrajat, Pratiwy FM, Chiyonobu S. 2024. Short Communication: Calcareous nannofossil assemblages and age determination in Leuwi Kenit, Ciletuh Palabuhanratu Geopark, Indonesia. Biodiversitas 25: 3200-3207. Our meticulous and comprehensive investigation of nannofossil diversity in Leuwi Kenit, Sukabumi District, West Java Province, Indonesia, a part of the Ciletuh Palabuhanratu UGG, where the study of nannofossils is limited, is of significant importance their implications for age determination and clarifying the geological history of the region. The initial documentation of calcareous nannofossils in the Leuwi Kenit traverse of the Cikarang Member within the Jampang Formation resulted in the identification of thirty-three species from 62 samples. The studied section reveals seven nannofossil biozones, arranged from oldest to youngest as follows: LO Sphenolithus ciperoensis; LO Cyclicargolithus abisectus; FO Sp. disbelemnos; FCO Helicosphaera carteri; FO Sp. belemnos; LCO Sp. belemnos; LO Sp. conicus and FCO Sp. heteromorphus. Notably, the abundance of Coccolithus pelagicus, Cyclicargolithus floridanus, Reticulofenestra spp., and Sphenolithus spp. characterized their occurrence throughout the section. The diversity and preservation of nannofossils were found to be good, and based on nannofossil biohorizons, the age of Leuwi Kenit spans from 24.3 million years ago to around 17.7 million years ago at Paleogene (Oligocene age) to Neogen Periode (Early Miocene age). Based on the nannofossils assemblages, results show that the area has many important indicator species, making it essential for future research on ancient ocean conditions and past climate changes within this geopark.

##plugins.themes.bootstrap3.article.details##

References
Aguado, R, Reolid M, Molina, E. 2016. Response of calcareous nannoplankton to the Late Cretaceous oceanic anoxic event 2 at Oued Bahloul (Central Tunisia). Palaeogeogr Palaeoclimatol Palaeoecol 459: 289-305. DOI: 10.1016/j.palaeo.2016.07.016.
Auer G, Bialik OM, Antoulas M-E, Vogt-Vincent N, Piller WE. 2023. Biotic response of plankton communities to middle to late miocene monsoon wind and nutrient flux changes in the Oman margin upwelling zone. Clim Past 2023: 1-40. DOI: 10.5194/cp-2023-14.
Auer G, Piller WE, Harzhauser M. 2014. High-resolution calcareous nannoplankton palaeoecology as a proxy for small-scale environmental changes in the Early Miocene. Mar Micropaleontol 111: 53-65. DOI: 10.1016/j.marmicro.2014.06.005.
Balch WM. 2018. The ecology, biogeochemistry, and optical properties of coccolithophores. Ann Rev Mar Sci 10 (1): 71-98. DOI: 10.1146/annurev-marine-121916-063319.
Ballegeer AM, Flores JA, Sierro FJ, Rigual-Hernández AS. 2022. Coccolith dissolution versus productivity changes during the Plio-Pleistocene (3.14-1.80 MA) in the South Atlantic (ODP site 1090). Palaeogeogr Palaeoclimatol Palaeoecol 603: 111184. DOI: 10.1016/j.palaeo.2022.111184.
Beltran, Rousselle CG, Backman J, Wade BS, Sicre MA. 2014. Paleoenvironmental conditions for the development of calcareous nannofossil acme during the late Miocene in the eastern equatorial Pacific. Paleoceanography 29: 210-222. DOI: 10.1002/2013PA002506.
Bergen JA, de Kaenel E, Blair SA, Boesiger TM, Browning E. 2017. Oligocene-Pliocene taxonomy and stratigraphy of the genus Sphenolithus in the circum-North Atlantic Basin: Gulf of Mexico and ODP Leg 154. J Plankton Res 37 (2-3): 77-112. DOI: 10.58998/jnr2016.
Betzler C, Eberli GP, Alvarez ZCA et al. 2017. Site U1467 and the expedition 359 scientists, Maldives Monsoon and sea level. In: Betzler C, Eberli GP, Alvarez ZCA (eds). Proceed Intl Ocean Disc Progr 359: 102. DOI: 10.14379/iodp.proc.359.102.2017.
Bown PR, Young JR. 1998. Introduction and techniques. In: Brown PR (eds). Calcareous Nannofossil Biostratigraphy. Kluwer Academic Publishers, London, United Kingdom. 1-28. DOI: 10.1007/978-94-011-4902-0.
Bown PR, Young JR. 2019. The fossil record of coastal coccolithophores. J Nannoplankton Res 4: 73-80. DOI: 10.58998/jnr2028.
Chakraborty A, Ghosh AK, Saxena S. 2021. Neogene calcareous nannofossil biostratigraphy of the northern Indian Ocean: Implications for palaeoceanography and palaeoecology. Palaeogeogr Palaeoclimatol Palaeoecol 579: 110583. DOI: 10.1016/j.palaeo.2021.110583.
Clark WB, Watkins DK. 2020. A quantitative analysis of calcareous nannofossils across a late oligocene paleolatitudinal transect of the North Atlantic Ocean. Mar Micropaleontol 158: 101892. DOI: 10.1016/j.marmicro.2020.101892.
Daniels CJ, Poulton AJ, Young JR, Esposito M, Humphreys MP, Ribas-Ribas M, Tynan E. 2016. Species-specific calcite production reveals Coccolithus pelagicus as the key calcifier in the Arctic Ocean. Mar Ecol Prog Ser 555: 29-47. DOI: 10.3354/meps11820.
Duchamp-Alphonse S, Gardin S, Bartolini A. 2014. Calcareous nannofossil response to the Weissert episode (Early Cretaceous): Implications for palaeoecological and palaeoceanographic reconstructions. Mar Micropaleontol 113: 65-78. DOI: 10.1016/j.marmicro.2014.10.002.
Dutkiewicz S, Cermeno P, Jahn O, Follows MJ, Hickman AE, Taniguchi DAA, Ward BA. 2020. Dimensions of marine phytoplankton diversity. Biogeosciences 17: 609-634. DOI: 10.5194/bg-17-609-2020.
Farida M, Jaya A, Nugraha J. 2022. Calcareous nannofossil biostratigraphy of tonasa formation at Barru River Traverse, South Sulawesi, Indonesia. Indones J Geosci 9 (3): 371-381. DOI: 10.17014/ijog.9.3.371-381.
Galovi? I. 2017. Sarmatian calcareous nannofossil assemblages in the SW Paratethyan marginal marine environments: Implications for palaeoceanography and the palaeoclimate. Prog Oceanogr 156: 209-220. DOI: 10.1016/j.pocean.2017.05.011.
Gradstein FM, Ogg JG, Schmitz MD, Ogg GM. 2020. The Geologic Time Scale 2020. Elsevier, Amsterdam. DOI: 10.1127/nos/2020/0634.
Hall R. 2012. Late Jurassic-Cenozoic reconstructions of the Indonesian region and the Indian Ocean. Tectonophysics 570-571: 1-41. DOI: 10.1016/j.tecto.2012.04.021.
Hanebuth TJJ, Voris HK, Yokoyama Y, Saito Y, Okuno J. 2011. Formation and fate of sedimentary depocentres on Southeast Asia’s Sunda Shelf over the past sea-level cycle and biogeographic implications. Earth-Sci Rev 104: 92-110. DOI: 10.1016/j.earscirev.2010.09.006.
Ikhram R, Rosana MF, Agusta R, Andriany SS. 2017. Study of significance of geodiversity in Ciletuh-Palabuhanratu National Geopark, West Java, Indonesia. Intl Conf Earth Sci Eng 2017: 1-11.
Imai R, Farida M, Sato T, Iryu Y. 2015. Evidence for eutrophication in the northwestern Pacific and eastern Indian oceans during the Miocene to Pleistocene based on the nannofossil accumulation rate, Discoaster abundance, and coccolith size distribution of Reticulofenestra. Mar Micropaleontol 116: 15-27. DOI: 10.1016/j.marmicro.2015.01.001.
Jones AP, Jones TD, Coxall H, Pearson PN, Nala D, Hoggett M. 2019. Low-Latitude Calcareous Nannofossil Response in the Indo-Pacific Warm Pool Across the Eocene-Oligocene Transition of Java, Indonesia. Paleoceanogr Paleoclimatol 34: 1833-1847. DOI: 10.1029/2019PA003597.
Kanungo S, Young J, Skowron G. 2017. Microfossils: Calcareous Nannoplankton (Nannofossils) BT. In: Sorkhabi R (eds). Encyclopedia of Petroleum Geoscience. Springer International Publishing, New York. DOI: 10.1007/978-3-319-02330-4_4-2.
Karatsolis BT, Henderiks J. 2023. Late Neogene nannofossil assemblages as tracers of ocean circulation and paleoproductivity over the NW Australian shelf. Clim Past 19 (4): 765-786. DOI: 10.5194/cp-19-765-2023.
Kasem AM, Faris M, Jovane L, Ads TA, Frontalini F, Zaky AS. 2022. Biostratigraphy and paleoenvironmental reconstruction at the Gebel Nezzazat (Central Sinai, Egypt): A paleocene record for the Southern Tethys. Geosciences 12 (2): 96. DOI: 10.3390/geosciences12020096.
Kelemen PB, Manning CE. 2015. Reevaluating carbon fluxes in subduction zones, what goes down, mostly comes up. Proceed Natl Acad Sci 112: 30. DOI: 10.1073/pnas.1507889112.
Ma R, Aubry M-P, Bord D, Jin X, Liu C. 2023b. Inferred nutrient forcing on the late middle Eocene to early Oligocene (?40-31 Ma) evolution of the coccolithophore Reticulofenestra (order Isochrysidales). Paleobiology 50 (1): 29-42. DOI: 10.1017/pab.2023.20.
Ma R, Jin X, Liu C. 2023a. High-resolution coccolithophore morphological changes in response to orbital forcings during the Early Oligocene. Geochem Geophys Geosyst 24 (4): e2022GC010746. DOI: 10.1029/2022GC010746.
Ma R, Yang H, Jin X, Zhao Z, Zhang G, Liu C. 2020. Calcareous nannofossil changes in the Early Oligocene linked to nutrient and atmospheric CO2. Acta Oceanol Sin 39 (10): 70-80. DOI: 10.1007/s13131-020-1661-6.
Maiorano P, Flores JA, Marino M, Ducassou E, Trotta S, Balestra B. 2023. Surface water dynamics of the last 20 kyr documented by coccolithophores in the Gulf of Cadiz. Palaeogeogr Palaeoclimatol Palaeoecol 617: 111498. DOI: 10.1016/j.palaeo.2023.111498.
Mancini AM, Grelaud M, Ziveri P, Nallino E, Lozar F. 2021. Calcareous nannofossil size and abundance response to the Messinian salinity crisis onset and paleoenvironmental dynamics. Palaeogeogr Palaeoclimatol Palaeoecol 36 (9): e2020PA004155. DOI: 10.1029/2020PA004155.
Marino M, Maiorano P, Tarantino F, Voelker A, Capotondi L, Girone A, Lirer F, Flores J-A, Naafs BDA. 2014. Coccolithophores as proxy of seawater changes at orbital-to-millennial scale during middle Pleistocene Marine Isotope Stages 14-9 in North Atlantic core MD01-2446. Paleoceanography 29 (6): 518-532. DOI: 10.1002/2013PA002574.
Martini E. 1971. Standard tertiary and quaternary calcareous nanno- plankton zonation. In Farinacci A (eds). Proceedings of the Second Planktonic Conference Roma 2: 739-785. Rome, Italy.
Meyer J, Riebesell U. 2015. Reviews and Syntheses: Responses of coccolithophores to ocean acidification: a meta-analysis. Biogeoscience 12 (6): 1671-1682. DOI: 10.5194/bg-12-1671-2015.
Nurlatifah A, Martono, Susanti I, Suhermat M. 2021. Variability and trend of sea level in southern waters of Java, Indonesia. J South Hemisph Earth Syst Sci 71 (3): 272-283. DOI: 10.1071/ES21004.
Pratiwi SD, Sato T. 2016. Reconstruction of paleoceanography significance in the Western Pacific and Atlantic Oceans during the Neogene based on calcareous nannofossil productivity and size variations, related to the global tectonic events. Open J Geol 6: 931-943. DOI: 10.4236/ojg.2016.68070.
Raffi I, Backman J. 2022. The role of calcareous nannofossils in building age models for Cenozoic marine sediments: A review. Rendiconti Lincei 33 (1): 25-38. DOI: 10.1007/s12210-022-01048-x.
Remy M, Hillebrand H, Flöder S. 2017. Stability of marine phytoplankton communities facing stress related to global change: Interactive effects of heat waves and turbidity. J Exp Mar Biol Ecol 497: 219-229. DOI: 10.1016/j.jembe.2017.10.002.
Sato T, Chiyonobu S. 2009. Cenozoic paleoceanography indicated by size change of calcareous nannofossil and Discoaster number (in Japanese with English abstract). Fossils 86: 12-19.
Sato T, Chiyonobu S. 2013. In: Oda Y, Sato T (eds). Manual of Microfossil Study (in Japanese). Asakura Publishing Co Ltd, Japan.
Schueth JD, Johnson K. 2023. Integrated statistical analysis of calcareous nannofossil and elemental geochemistry of an outcrop from of the eastern Cenomanian Western Interior Seaway: Novel insights of shallow marine paleoceanography and nannoplankton paleoecology. Mar Micropaleontol 184: 102290. DOI: 10.1016/j.marmicro.2023.102290.
Sukamto RAB. 1975. Peta Geologi Lembar Jampang dan Balekambang, Jawa Barat, Skala 1:100.000. Pusat Penelitian dan Pengembangan Geologi, Bandung. [Indonesian]
Ummah K, Sukiyah E, Rosana MF, CSS Syah Alam BY. 2018. Remote Sensing Identification of Possible Meteorite Impact Crater on Ciletuh, West Java. Int. J. Adv. Sci. Eng. Inf. Technol 8 (5): 1962-1968. DOI: 10.18517/ijaseit.8.5.5559.
Young JR, Archontikis OA, Su X, Pratiwi SD. 2021. Nannofossil palaeoecology of Lower Miocene sapropels from IODP Expedition 359, the Maldives. Palaeogeogr Palaeoclimatol Palaeoecol 571: 110325. DOI: 10.1016/j.palaeo.2021.110325.
Young JR, Geisen M, Gros L, Kleyne A, Sprengel C, Probert I, Ostergard J. 2003. A guide to extant coccolithosphose taxonomy. J Nannoplankton Res 1:1-125. DOI: 10.58998/jnr2297.