Inhibition of Multi Drug-Resistant (MDR) Escherichia coli and Klebsiella pneumoniae by bacteriocin bifidobacteria and the viability of selected bifidobacteria encapsulated with tapioca

##plugins.themes.bootstrap3.article.main##

OEDJIJONO
DYAH FITRI KUSHARYATI
https://orcid.org/0000-0001-9197-297X
DINI RYANDINI
https://orcid.org/0000-0003-4282-0288
HENDRO PRAMONO
https://orcid.org/0000-0002-0022-0877

Abstract

Abstract. Oedjijono, Kusharyati DF, Ryandini D, Pramono H. 2023. Inhibition of Multi Drug-Resistant (MDR) Escherichia coli and Klebsiella pneumoniae by bacteriocin bifidobacteria and the viability of selected bifidobacteria encapsulated with tapioca. Biodiversitas 24: 4175-4182. This study was conducted to investigate the antimicrobial efficacy of eight Bifidobacterium spp. against multidrug-resistant (MDR) bacteria, namely Escherichia coli and Klebsiella pneumoniae. Additionally, the viability of selected encapsulated bifidobacteria was assessed at different storage durations. The non-neutralized or neutralized supernatant pH of eight bifidobacterial isolates (BCC6, BC4, BBP6, BC7, BBP1, BC13, BCC5, BCC8) inhibited the growth of MDR E. coli and K. pneumoniae. The non-neutralized supernatant Bifidobacterium sp. BBP6 resulted in the highest inhibition against E. coli or K. pneumoniae with a clear zone of 8 mm. In contrast, the neutralized supernatant of Bifidobacterium sp. BBP1 showed the highest inhibition only against E. coli, with a clear zone of 8 mm. The bacteriocin of BCC5 and BBP6 isolates showed the highest inhibition against MDR E. coli, with inhibition zones of 12.5 mm and 12 mm, respectively. Similarly, the bacteriocin of BBP6 isolate gave the highest inhibition against K. pneumoniae, with a zone of 7 mm. The cell numbers of the tapioca-encapsulated isolate BBP6 were quite stable in comparison to BBP1, which were 8.4 log cfu.g-1 and 8.1 log cfu.g-1 at initial storage and 6.32 log cfu.g-1 and 7.41 log cfu.g-1 after eight weeks. The viability percentage of encapsulated Bifidobacterium sp. BBP6 (86.91%) surpassed that of BBP1 isolate (78.41%) during the eight-week storage period at 4oC. The storage time of the BBP6 at 4oC was 6.05 weeks or 42.35 days.

##plugins.themes.bootstrap3.article.details##

References
Aghajani A, Nezhad HH, Mortazavi SA, Yazdi FT. 2019. Microencapsulation of probiotics in yoghurt: A review. International Congress on Engineering, Technology & Innovation, Darmstadt University, Germany, 01 August 2019.
Amin T, Thakur M, Jain SC. 2013. Microencapsulation-the future of probiotic cultures. Journal of Microbiology, Biotechnology and Food Sciences 3(1): 35-43, https://www.researchgate.net/publication/285816578_Microencapsulation_the_future_of_probiotic_cultures.
Ayama H, Sumpavapol P, Chanthachum S. 2014. Effect of encapsulation of selected probiotic cell on survival in simulated gastrointestinal tract condition. Songklanakarin J. Sci. Technol. 36 (3): 291-299. www.researchgate.net/publication/279559966_Effect_of_encapsulation_of_selected_ probiotic_cell on_survival_in_simulated_gastrointestinal_ tract_condition.
Cha?varri M, Maran?o?n I, Villara?n MC. 2012. Encapsulation Technology to Protect Probiotic Bacteria. Intech Open Science. DOI: 10.5772/50046.
De Vos P, Faas MM, Spasojevic M, Sikkema J. 2010. Encapsulation for preservation of functionality and targeted delivery of bioactive food components. International Dairy Journal 20(4): 292-302, https://doi.org/10.1016/j.idairyj.2009.11.008.
Denkovskien? E, Paškevi?ius S, Misi?nas A, Sto?k?nait? B, Starkevi? U, Vitkauskien? A, Hahn-Löbmann S, Schulz S, Giritch A, Gleba Y, Ražanskien? A. 2019. Broad and efcient control of Klebsiella pathogens by peptidoglycan-degrading and pore forming bacteriocins Klebicins. Scientific Reports Nature Research 9, 15422, https://doi.org/10.1038/s41598-019-51969-1.
FAO/WHO. 2002. Guidelines for the Evaluation of Probiotics in Food, Food and Agriculture Organization of the United Nations/World Health Organization, London, UK.
Ghazaei C. 2022. Study of the effect of bacteriocin-producing Bacillus subtilis strains on beta-lactamase-producing pathogenic bacteria. J Clin Res Paramed Sci. 11(2):e130208, https://doi.org/10.5812/jcrps-130208.
Guan N, Liu L. 2020. Microbial response to acid stress: mechanisms and applications. Applied Microbiology and Biotechnology 104 (1): 51–65, https://doi.org/10.1007/s00253-019-10226-1
Hasan FB, Reza M, Abdullah Al Masud HM, Uddin MK, Uddin MS. 2019. Preliminary characterization and inhibitory activity of bacteriocin like substances from Lactobacillus casei against multi-drug resistant bacteria. Bangladesh J Microbiol 36(1): 01-06, https://doi.org/10.3329/bjm.v36i1.44259.
Hendrati PM, Kusharyati DF, Ryandini D, Oedjijono. 2017. Characterization of Bifidobacteria from infant feces with different mode of birth at Purwokerto, Indonesia. Biodiversitas 18(3): 1265-1269, DOI: 10.13057/biodiv/d180352.
Hoh PY, Lai KW, How YW, Pui LP. 2021. Microencapsulation of Lactobacillus rhamnosus GG with resistant starch and xanthan gum. Walailak J Sci & Tech 18(15): 9573, https://doi.org/10.48048/wjst.2021.9573.
Kawasaki S, Mimura T, Satoh T, Takeda K, Niimura Y. 2006. Response of the microaerophilic Bifidobacterium species, B. boum and B. thermophilum, to Oxygen. Applied and Environmental Microbiology 72(10): 6854–6858, DOI:10.1128/AEM.01216-06.
Khumpouk P, Saichanaphan N, Khimmakthong U. 2022. The efficiency of polysaccharide microencapsulation in improving survival of probiotic bacteria. Songklanakarin J. Sci. Technol. 44 (1): 184-190.
Kusharyati DF, Hendrati PM, Ryandini D, Manshur TA, Dewi MA, Khatimah K, Rovik A. 2020. Isolation of Bifidobacterium from infant’s feces and its antimicrobial activity. 10th Asian Conference of Lactic Acid Bacteria, Digital Press Life Sciences 2: 00002 (2020), http://dx.doi.org/10.29037/digitalpress.22326.
Kusmarwati A, Arief FR, Haryati S. 2014. Eksplorasi bakteriosin dari bakteri asam laktat asal Rusip Bangka dan Kalimantan. Jurnal Pascapanen dan Bioteknologi Kelautan dan Perikanan 9(1): 29-40, http://dx.doi.org/10.15578/jpbkp.v9i1.97.
Lee YJ, Ji YR, Lee S, Choi M-J, Cho Y. 2019. Microencapsulation of probiotic Lactobacillus acidophilus KBL409 by extrusion technology to enhance survival under simulated intestinal and freeze-drying conditions. J. Microbiol. Biotechnol. 29(5): , https://doi.org/10.4014/jmb.1903.03018.
Lei S, Zhao R, Sun J, Ran J, Ruan X, Zhu Y. 2020. Partial purification and characterization of a broad-spectrum bacteriocin produced by a Lactobacillus plantarum zrx03 isolated from infant's feces. Food Science & Nutrition 8:2214–2222, DOI: 10.1002/fsn3.1428.
Martinez FAC, Balciunas EM, Converti A, Cotter PD, de Souza Oliveira RP. 2013. Bacteriocin production by Bifidobacterium spp. A Review. Biotechnology Advances 31(4): 482-488, DOI: 10.1016/j.biotechadv.2013.01.010.
Mortazavian A, Razavi SH, Ehsani MR, Sohrabvandi S. 2007. Principles and methods of microencapsulation of probiotic microorganisms. Iranian Journal of Biotechnology 5(1): 1-18, http://www.ijbiotech.com/article_7032_5e3cc6d8d83997d86de1f1e9a98f632b.pdf.
Ogundare O.C, Odetunde SK, Omotayo MA, Oluremilekun O. Sokefun OO, Akindiya RO, Akinboro A. 2021. Biopreservative application of bacteriocins obtained from samples Ictalurus punctatus and fermented Zea mays. African Journal of Microbiology Research 15(8): 408-419, DOI: 10.5897/AJMR2017.8443.
Pankasemsuk T, Apichartsrangkoon A, Worametrachanon S, Techarang J. 2016. Encapsulation of Lactobacillus casei 01 by alginate along with hi-maize starch for exposure to a simulated gut model. Food Bioscience 16: 32–36. https://doi.org/10.1016/ j.fbio.2016.07.001.
Perez R.H, Zendo T, Sonomoto K.2014. Novel bacteriocin from lactic acid bacteria (LAB): various structures and applications. Microbial Cell Factories 13(1): 1-13, https://doi.org/10.1186%2F1475-2859-13-S1-S3.
Pircalabioru GG, Popa LI, Marutescu L, Gheorghe I, Popa M, Barbu IC, Cristescu R, Chifiriuc M-C. 2021. Bacteriocins in the era of antibiotic resistance: Rising to the challenge. Pharmaceutics 13: 196, https://doi.org/10.3390/pharmaceutics13020196.
Purwandhani SN, Suladra M, Rahayu ES. 2007. Stabilitas thermal agensia probiotik L. acidophilus SNP 2 terenkapsulasi metode ekstrusi dan emulsi. Prosiding Seminar Nasional Teknologi 2007, 24 November 2007, Yogyakarta. [Indonesian]
Puspawati NN, Nuraida L, Adawiyah DR. 2010. Penggunaan berbagai jenis bahan pelindung untuk mempertahankan viabilitas bakteri asam laktat yang diisolasi dari air susu ibu pada proses pengeringan beku. J. Teknol. dan Industri Pangan 21(1): 59-65, https://journal.ipb.ac.id/index.php/jtip/article/view/2463
Quinto EJ, Jiménez P, Caro I, Tejero J, Mateo J, Girbés T. 2014. Probiotic lactic acid bacteria: A review. Food and Nutrition Sciences 5(18): 1765-1775. http://dx.doi.org/10.4236/fns.2014.518190.
Radosavljevi? M, Levi? S, Pejin J, Mojovi? L, Nedovi? V. 2022. Encapsulation technology of lactic acid bacteria in food fermentation. Applied Biotechnology Reviews 2022: 319-347, https://doi.org/10.1016/B978-0-323-89875-1.00015-8.
Sari RA, Nofiani R, Ardiningsih P. 2012. Karakterisasi bakteri asam laktat genus Leuconostoc dari Pekasam Ale-Ale hasil formulasi skala laboratorium. JKK 1(1): 14-20, https://jurnal.untan.ac.id/index.php/jkkmipa/article/view/992/941.
Shori AB. 2022. Application of Bifidobacterium spp. in beverages and dairy food products: an overview of survival during refrigerated storage. Food Science and Technology 42: e41520, https://doi.org/10.1590/fst.41520.
Solanki HK, Pawar DD, Shah DA, Prajapati VD, Jani GK, Mulla AM, Thakar, PM. 2013. Development of microencapsulation delivery system for long-term preservation of probiotics as biotherapeutics agent. BioMed Research International 2013, pp: 1-21, https://doi.org/10.1155/2013/620719.
Swinkels JM. 1985. Sources of starch, its chemistry and physics. In: Van Beynum GM, Roel JA (eds), Starch conversion technology. Dekker, New York.
Talwakar A, Kailasapathy K. 2014. A Review of oxygen toxicity in probiotic yogurts: Influence on the survival of probiotic bacteria and protective techniques. Comprehensive Reviews in Food Science and Food Safety 3(3): 117-124, https://doi.org/10.1111/j.1541-4337.2004.tb00061.x.
Thangrongthong S, Puttarat N, Ladda B, Itthisoponkul T, Pinket W, Kasemwong K, Taweechotipart. 2020. Microencapsulation of probiotic Lactobacillus brevis ST-69 producing GABA using alginate supplemented with nanocrystalline starch. Food Sci Biotechnol 29(11): 1475-1482, https://doi.org/10.1007/s10068-020-00812-9.
Triana E, Yulinery T. 2015. Uji stabilitas probiotik Lactobacillus plantarum Mar8 terenkapsulasi dalam sediaan oralit dengan analisis viabilitas. Prosiding Seminar Nasional Masyarakat Biodiversitas Indonesia 1(2): 278-282, DOI: 10.13057/psnmbi/m010218.
Wang X, Gao S, Yun S, Zhang M, Peng L, Li Y, Zhou Y. 2022. Review: Microencapsulating alginate-based polymers for probiotics delivery systems and their application. Pharmaceuticals 15(5): 644, https://doi.org/10.3390/ph15050644.
Wang Y, Wu J, Lv M, Shao Z, Hungwe M, Wang J, Bai X, Xie J, Yanping Wang Y, Geng W. 2021. Metabolism characteristics of lactic acid bacteria and the expanding applications in food industry. Frontiers in Bioengineering and Biotechnology 9: 612285, https://doi.org/10.3389/fbioe.2021.612285
Yulinery T, Nurhidayat. 2012. Analisis viabilitas probiotik Lactobacillus tertenkapsulasi dalam penyalut dekstrin dan jus Markisa (Passiflora edulis). Jurnal Teknologi Lingkungan 13(1): 109-121, https://dx.doi.org/10.29122/jtl.v13i1.1411.

Most read articles by the same author(s)