Potential of sodium dichromate and sodium silicate to control in vitro growth of Bacillus cereus, a metal corrosion-causing bacterium

##plugins.themes.bootstrap3.article.main##

YENNI CIAWI
FAINMARINAT SELVIANI INABUY
NI MADE TERIYANI
YAN RAMONA

Abstract

Abstract. Ciawi Y, Inabuy FS, Teriyani NM, Ramona Y. 2023. Potential of sodium dichromate and sodium silicate to control in vitro growth of Bacillus cereus, a metal corrosion-causing bacterium. Biodiversitas 24: 1530-1537. The maintenance cost of metal-based objects in industrial and construction sectors has been found to significantly increase due to corrosion. Most corrosion is caused by metal oxidation, and about 2% of this corrosion is induced by microbial activity (MIC). The main objectives of this research were to isolate, and identify corrosion-causing bacteria, and to find out the optimum concentration of sodium dichromate and sodium silicate to control their growth in vitro. These compounds have been used to protect the metal surface from corrosion caused by non-microbial-induced corrosion. Three different bacterial isolates were obtained in this study and the black colony (the predominant isolate) was further investigated in the determination of their optimum inhibitory concentrations. Application of sodium dichromate and sodium silicate at the rates of 0.1% w/v and 2% w/v, respectively were found to be optimum to inhibit the in vitro growth of this black bacterial isolate in our study. The predominant isolate found in our study was identified as Bacillus cereus, following the alignment of its 16s rDNA sequence with those deposited at the GenBank (NCBI). Additionally, Enterobacter asburiae was also found on the surface of corroded water tanks.

##plugins.themes.bootstrap3.article.details##

References
Braccia DJ, Jiang X, Pop M, Hall AB. 2021. The Capacity to Produce Hydrogen Sulfide (H2S) via Cysteine Degradation Is Ubiquitous in the Human Gut Microbiome. Frontiers in Microbiology 12: 705583. https://doi.org/10.3389/fmicb.2021.705583
Cai D, Wu J, Chai K. 2021. Microbiologically Influenced Corrosion Behavior of Carbon Steel in the Presence of Marine Bacteria Pseudomonas sp. And Vibrio sp. ACS Omega 6(5): 3780–3790. https://doi.org/10.1021/acsomega.0c05402
Chen QY, DesMarais T, Costa M. 2019. Metals and Mechanisms of Carcinogenesis. Annual Review of Pharmacology and Toxicology 59(1): 537–554. https://doi.org/10.1146/annurev-pharmtox-010818-021031
Cui Y-Y, Qin Y-X, Ding Q-M, Gao Y-N. 2021. Study on corrosion behaviour of X80 steel under stripping coating by sulfate-reducing bacteria. BMC Biotechnology 21(1): 5. https://doi.org/10.1186/s12896-020-00664-5
Dong X, Guan F, Xu L, Duan J, Hou B. 2021. Progress on the Corrosion Mechanism of Sulfate-reducing Bacteria in Marine Environment on Metal Materials. Journal of Chinese Society for Corrosion and Protection 41(1): 1–12. https://doi.org/10.11902/1005.4537.2019.241
El Hajj H, Abdelouas A, El Mendili Y, Karakurt G, Grambow B, Martin C. 2013. Corrosion of carbon steel under sequential aerobic–anaerobic environmental conditions. Corrosion Science 76: 432–440. https://doi.org/10.1016/j.corsci.2013.07.017
Enning D, Garrelfs J. 2014. Corrosion of iron by sulfate-reducing bacteria: New views of an old problem. Appl. Environ. Microbiol. 80: 1226–1236. https://doi.org/10.1128%2FAEM.02848-13
Faiq S, Mokhtar CI. 2022. Effect of Biocide Injection on Bacteria Growth and Microbiologically Influenced Corrosion (mic). International Journal of Engineering Advanced Research 4(1): 140–148.
Hirano S, Ihara S, Wakai S, Dotsuta Y, Otani K, Kitagaki T, Ueno F, Okamoto A. 2022. Novel Methanobacterium Strain Induces Severe Corrosion by Retrieving Electrons from Fe0 under a Freshwater Environment. Microorganisms 10(2): 270. https://doi.org/10.3390/microorganisms10020270
Hirano S, Nagaoka T, Matsumoto N. 2020. Microbial community dynamics in a crust formed on carbon steel SS400 during corrosion. Corrosion Engineering, Science and Technology 55(8): 685–692. https://doi.org/10.1080/1478422X.2020.1774961
Imo EO, Chinedu I, Orji J, Nweke C, Adieze I. 2016. Mechanism of microbial corrosion: A Review. Journal of Chemical, Biological and Physical Sciences 6(4): 1173–1178.
in ‘t Zandt MH, Kip N, Frank J, Jansen S, van Veen JA, Jetten MSM, Welte CU. 2019. High-Level Abundances of Methanobacteriales and Syntrophobacterales May Help To Prevent Corrosion of Metal Sheet Piles. Applied and Environmental Microbiology 85(20): e01369-19. https://doi.org/10.1128/AEM.01369-19
Jia R, Unsal T, Xu D, Lekbach Y, Gu T. 2019. Microbiologically influenced corrosion and current mitigation strategies: A state of the art review. International Biodeterioration & Biodegradation 137: 42–58. https://doi.org/10.1016/j.ibiod.2018.11.007
Kahraman H, Karaderi CC. 2022. Production of proline and protease with different organic wastes in bacteria (Production proline and protease with organic wastes). Brazilian Journal of Biology 82: e243187. https://doi.org/10.1590/1519-6984.243187
Kamaruzzaman WMIWM, Fekeri MFM, Nasir NAM, Hamidi NASM, Baharom MZ, Adnan A, Shaifudin MS, Abdullah WRW, Wan Nik WMN, Suhailin FH, Matori KA, Kien CS, Zaid MHM, Ghazali MSM. 2021. Anticorrosive and Microbial Inhibition Performance of a Coating Loaded with Andrographis paniculata on Stainless Steel in Seawater. Molecules 26(11): 3379. https://doi.org/10.3390/molecules26113379
Kato S. 2016. Microbial extracellular electron transfer and its relevance to iron corrosion. Microbial Biotechnology 9(2): 141–148. https://doi.org/10.1111/1751-7915.12340
Khan MA, Hadromi. 2020. Pengaruh Inhibitor Natrium Kromat terhadap Laju Korosi pada Komponen Radiator Sistem Pendingin Mobil. Automotive Science and Education Journal 9(1): 18–24.
Kiani-Khouzani M, Bahrami A, Hosseini-Abari A, Khandouzi M, Taheri P. 2019. Microbiologically Influenced Corrosion of a Pipeline in a Petrochemical Plant. Metals 9(4): 459. https://doi.org/10.3390/met9040459
Kip N, van Veen JA. 2015. The dual role of microbes in corrosion. The ISME Journal 9(3): 542–551. https://doi.org/10.1038/ismej.2014.169
Koz?owska L, Santonen T, Duca RC, Godderis L, Jagiello K, Janasik B, Van Nieuwenhuyse A, Poels K, Puzyn T, Scheepers PTJ, Sijko M, Silva MJ, Sosnowska A, Viegas S, Verdonck J, W?sowicz W, on behalf of HBM4EU Chromates Study Team, & on behalf of Statistical Team. 2022). HBM4EU Chromates Study: Urinary Metabolomics Study of Workers Exposed to Hexavalent Chromium. Metabolites 12(4): 362. https://doi.org/10.3390/metabo12040362
Lewandowski Z, Beyenal H. 2009. Mechanisms of Microbially Influenced Corrosion. In Flemming H-C, Murthy PS, Venkatesan R, Cooksey K (eds). Marine and Industrial Biofouling 4: 35–64. Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-69796-1_3
Li B, Trueman BF, Munoz S, Locsin JM, Gagnon GA. 2021. Impact of sodium silicate on lead release and colloid size distributions in drinking water. Water Research 190: 116709. https://doi.org/10.1016/j.watres.2020.116709
Li Y, Feng S, Liu H, Tian X, Xia Y, Li M, Xu K, Yu H, Liu Q, Chen C. 2020. Bacterial distribution in SRB biofilm affects MIC pitting of carbon steel studied using FIB-SEM. Corrosion Science 167: 108512. https://doi.org/10.1016/j.corsci.2020.108512
Lin SY, Hameed A, Liu YC, Hsu YH, Lai WA, Shen FT, Young LS, Tsai CF, Young CC. 2013. Aureimonas ferruginea sp. nov. and Aureimonas rubiginis sp. nov., two siderophore-producing bacteria isolated from rusty iron plates. Int J Syst Evol Microbiol. 63(Pt 7): 2430-2435. doi: 10.1099/ijs.0.047431-0. Epub 2012 Nov 30. PMID: 23203620.
Little BJ, Blackwood DJ, Hinks J, Lauro FM, Marsili E, Okamoto A, Rice SA, Wade SA, Flemming H-C. 2020. Microbially influenced corrosion—Any progress? Corrosion Science 170: 108641. https://doi.org/10.1016/j.corsci.2020.108641
Mainier FB, Figueiredo AAM, de Freitas AER, de Alencar Junior AAM. 2016. The Use of Sodium Silicate as a Corrosion Inhibitor in a Saline Drilling Fluid: A Nonaggressive Option to the Environment. Journal of Environmental Protection 07(13): 2025–2035. https://doi.org/10.4236/jep.2016.713157
Moreira-Filho P, de Paula da Silva Figueiredo P, Capão A. et al. 2022. The influence of the marine Bacillus cereus over carbon steel, stainless corrosion, and copper coupons. Arch Microbiol 204: 9. https://doi.org/10.1007/s00203-021-02607-w
Murros KE. 2022. Hydrogen Sulfide Produced by Gut Bacteria May Induce Parkinson’s Disease. Cells 11(6): 978. https://doi.org/10.3390/cells11060978
Nickens KP, Patierno SR, Ceryak S. 2010. Chromium genotoxicity: A double-edged sword. Chemico-Biological Interactions 188(2): 276–288. https://doi.org/10.1016/j.cbi.2010.04.018
Nwankwo H, Ateba C, Olasunkanmi L, Adekunle A, Isabirye D, Onwudiwe D, Ebenso E. 2016. Synthesis, Characterization, Antimicrobial Studies and Corrosion Inhibition Potential of 1,8-dmethyl-1,3,6,8,10,13-hexaazacyclotetradecane: Experimental and Quantum Chemical Studies. Materials 9(2): 107. https://doi.org/10.3390/ma9020107
Omar S, Khalil N, EL-Ahwany A, El-Sayed H, Arafat S. 2021. Mitigation of Microbiologically Induced Corrosion (MIC) and Preventive Strategies. Vol. 3. MedDocs Publishers. https://meddocsonline.org/ebooks/ebook-microbiology/mitigation-of-microbiologically-Induced-corrosion-and-preventive-strategies.pdf
Parthipan P, Babu TG, Anandkumar B, Rajasekar A. 2017. Biocorrosion and Its Impact on Carbon Steel API 5LX by Bacillus subtilis A1 and Bacillus cereus A4 Isolated From Indian Crude Oil Reservoir. J Bio Tribo Corros 3: 32. https://doi.org/10.1007/s40735-017-0091-2
Procópio L. 2019. The role of biofilms in the corrosion of steel in marine environments. World Journal of Microbiology and Biotechnology 35(5): 73. https://doi.org/10.1007/s11274-
Rasheed PA, Pandey RP, Jabbar KA, Samara A, Abdullah AM, Mahmoud KA. 2020. Chitosan/Lignosulfonate Nanospheres as “Green” Biocide for Controlling the Microbiologically Influenced Corrosion of Carbon Steel. Materials 13(11): 2484. https://doi.org/10.3390/ma13112484
Royani A, Hanafi M, Julistiono H, Manaf A. 2022. Biokorosi dan Teknologi Pencegahannya di Industri Minyak dan Gas. Metalurgi 36(3): 135. https://doi.org/10.14203/metalurgi.v36i3.608
Saimin J, Hartati H, Purnamasari Y, Mulyawati SA, Tien T, Ayitrina P. 2020. Microbiological and Biochemical Contamination Analysis of Refilled Drinking-water in Abeli, Kendari, Southeast Sulawesi. The Indonesian Biomedical Journal 12(2): 124–129. https://doi.org/10.18585/inabj.v12i2.871
Salgar-Chaparro SJ, Darwin A, Kaksonen AH, Machuca LL. 2020. Carbon steel corrosion by bacteria from failed seal rings at an offshore facility. Scientific Reports 10(1): 12287. https://doi.org/10.1038/s41598-020-69292-5
Santonen T, Porras, S. P., Bocca, B., Bousoumah, R., Duca, R. C., Galea, K. S., Godderis, L., Göen, T., Hardy, E., Iavicoli, I., Janasik, B., Jones, K., Leese, E., Leso, V., Louro, H., Majery, N., Ndaw, S., Pinhal, H., Ruggieri, F., … Veijalainen, H. 2022. HBM4EU chromates study—Overall results and recommendations for the biomonitoring of occupational exposure to hexavalent chromium. Environmental Research, 204, 111984. https://doi.org/10.1016/j.envres.2021.111984
Sierra MV, Gomez N. 2007. Structural Characteristics and Oxygen Consumption of the Epipelic Biofilm in Three Lowland Streams Exposed to Different Land Uses. Water, Air, and Soil Pollution, 186(1–4), 115–127. https://doi.org/10.1007/s11270-007-9469-y
Suarez EM, Lepková K, Forsyth M, Tan MY, Kinsella B, Machuca LL. 2022. In Situ Investigation of Under-Deposit Microbial Corrosion and its Inhibition Using a Multi-Electrode Array System. Frontiers in Bioengineering and Biotechnology, 9, 803610. https://doi.org/10.3389/fbioe.2021.803610
Tao Z, Liu G, Li Y, Zhang R, Su H, Li S. 2020. Electrochemical Investigation of Tetrazolium Violet as a Novel Copper Corrosion Inhibitor in an Acid Environment. ACS Omega 5(9): 4415–4423. https://doi.org/10.1021/acsomega.9b03475
Tavares A, Aimonen K, Ndaw S, Fu?i? A, Catalán J, Duca RC, Godderis L, Gomes BC, Janasik B, Ladeira C, Louro H, Namorado S, Nieuwenhuyse AV, Norppa H, Scheepers PTJ, Ventura C, Verdonck J, Viegas S, Wasowicz W, Santonen T, Silva MJ on behalf of the HBM4EU Chromates Study Team. 2022. HBM4EU Chromates Study—Genotoxicity and Oxidative Stress Biomarkers in Workers Exposed to Hexavalent Chromium. Toxics 10(8): 483. https://doi.org/10.3390/toxics10080483
Thakur A, Kumar A. 2021. Sustainable Inhibitors for Corrosion Mitigation in Aggressive Corrosive Media: A Comprehensive Study. Journal of Bio- and Tribo-Corrosion 7(2): 67. https://doi.org/10.1007/s40735-021-00501-y
Tran TTT, Kannoorpatti K, Padovan A, Thennadil S, Nguyen K. 2021. Microbial corrosion of DSS 2205 in an acidic chloride environment under continuous flow. PLOS ONE 16(5): e0251524. https://doi.org/10.1371/journal.pone.0251524
Tuck B, Leinecker N, Watkin E, Somers A, Forsyth M, Machuca LL. 2022. Efficiency of a Novel Multifunctional Corrosion Inhibitor Against Biofilms Developed on Carbon Steel. Frontiers in Bioengineering and Biotechnology 10: 803559. https://doi.org/10.3389/fbioe.2022.803559
Uthayasooriyan M, Pathmanathan S, Ravimannan N, Sathyaruban S. 2016. Formulation of alternative culture media for bacterial and fungal growth. Der Pharmacia Lettre 8(1): 431–436.
Varseev EV, Alekseev VV. 2015. Erratum to: Mass Transfer of Corrosion Products in the Nonisothermal Sodium Loop of a Fast Reactor. Journal of Engineering Physics and Thermophysics 88(1): 285–285. https://doi.org/10.1007/s10891-015-1191-9
Wan H, Song D, Zhang D, Du C, Xu D, Liu Z, Ding D, Li X. 2018. Corrosion effect of Bacillus cereus on X80 pipeline steel in a Beijing soil environment. Bioelectrochemistry 121: 18-26. doi: 10.1016/j.bioelechem.2017.12.011. Epub 2017 Dec 24. PMID: 29329018.
Wang YS, Liu L, Fu Q, Sun J, An ZY, Ding R, Li Y, Zhao XD. 2020. Effect of Bacillus subtilis on corrosion behavior of 10MnNiCrCu steel in marine environment. Scientific Reports 10(1): 5744. https://doi.org/10.1038/s41598-020-62809-y
Ye J, Ren G, Wang C, Hu A, Li F, Zhou S, He Z. 2021. A facile and fast strategy for cathodic electroactive-biofilm assembly via magnetic nanoparticle bioconjugation. Biosensors and Bioelectronics 190: 113464. https://doi.org/10.1016/j.bios.2021.113464
Zhang J, Cheng X, Chang L, Zhang L, Zhang S. 2021. Combined treatments of chitosan and sodium silicate to inhibit Alternaria alternata pathogens of postharvest winter jujube. Food Science and Biotechnology 30(4): 589–597. https://doi.org/10.1007/s10068-021-00890-3
Zhu Y, Costa M. 2020. Metals and molecular carcinogenesis. Carcinogenesis 41(9): 1161–1172. https://doi.org/10.1093/carcin/bgaa076