Secondary metabolites of the granular form of Pseudomonas fluorescens P60 and its applications to control tomato bacterial wilt

##plugins.themes.bootstrap3.article.main##

LOEKAS SOESANTO
DHIMAS AULI SAPUTRA
MURTI WISNU RAGIL SASTYAWAN
ENDANG MUGIASTUTI
AGUS SUPRAPTO
RUTH FETI RAHAYUNIATI

Abstract

Abstract. Soesanto L, Saputra DA, Sastyawan MWR, Mugiastuti E, Suprapto A, Rahayuniati RF. 2023. Secondary metabolites of the granular form of Pseudomonas fluorescens P60 and its applications to control tomato bacterial wilt. Biodiversitas 24: 2475-2482. Bacterial wilt is one of the important diseases of tomatoes caused by Ralstonia solanacearum (Smith 1896) Yabuuchi et al. 1996. Its control can be achieved by applying secondary metabolites of Pseudomonas fluorescens Migula 1895 P60 in granular form. The study aimed to determine the shelf life of the secondary metabolites P. fluorescens P60' in granular form and its application to manage bacterial wilt and the performance of tomatoes. The study was conducted for five months at the Plant Protection Laboratory and Experimental Farm, Faculty of Agriculture, Universitas Jenderal Soedirman. A randomized block design was used with four replicates and six treatments, consisting of R. solanacearum (control), R. solanacearum + 1, 5, 10, or 15 g, and bactericide (a.i. agrimycin sulphate 20%). Variables observed were inhibition zone, incubation period, disease intensity, the area under disease progress curve (AUDPC), crop height, crop fresh and dry weight, root fresh and dry weight, and phenolic compounds qualitatively. Results of the research showed that the granular formula until the 4th week still had an inhibition zone between 21.67-23.34%. However, the granules stored for as much as 15 g for four weeks effectively reduced disease intensity by 75.00%, decreased AUDPC value by 74.72%, and increased plant height, root dry weight, and fresh crop weight as well 44, 62.5, and 65.65 %, respectively. In addition, the granular formula increased the content of tomato phenolic compounds qualitatively.

##plugins.themes.bootstrap3.article.details##

References
Abd-Elgawad MMM, Askary TH. 2020. Factors affecting success of biological agents used in controlling the plant-parasitic nematodes. Egyptian Journal of Biological Pest Control 30(17). DOI: 10.1186/s41938-020-00215-2.
Babenko, L.M., Smirnov, O.E., Romanenko, K.O., Trunova, O.K., & Kosak?vsk?, I.V. 2019. Phenolic compounds in plants: biogenesis and functions. Ukr. Biochem. J. 91(3): 5-18. DOI: 10.15407/ubj91.03.005.
Bhowmik D, Kumar KPS, Paswan S, Srivastava S. 2012. Tomato-A natural medicine and its health benefits. Journal of Pharmacognosy and Phytochemistry 1(1): 24-36.
BPS. 2020. Tabel dinamis produksi tanaman sayuran. (On-line) https://www.bps.go.id/site/resultTab diakses 21 Mei 2020.
Burton-Freeman B, Reimers KJ. 2011. Tomato consumption and health: Emerging benefits. American Journal of Lifestyle Medicine 5(2): 182-191. DOI: 10.1177/1559827610387488.
Caldwell, D., Kim, B.-S., & Iyer-Pascuzzi, A.S. 2017. Ralstonia solanacearum differentially colonizes roots of resistant and susceptible tomato plants. Phytopathology 107(5): 528-536. DOI: 10.1094/PHYTO-09-16-0353-R.
Campos, E.V.R., J.L. de Oliveira, M. Pascoli, R. de Lima, & L.F. Fraceto. 2016. Neem oil and crop protection: From now to the future. Front Plant Sci. 7: 1494. Doi: 10.3389/fpls.2016.01494.
Carisse, O. 2016. Development of grape downy mildew (Plasmopara viticola) under northern viticulture conditions: Influence of fall disease incidence. European Journal of Plant Pathology 144(4): 773–783. DOI: 10.1007/s10658-015-0748-y.
Chen, Y., F. Yan, Y. Chai, H. Liu, R. Kolter, R. Losick, & J. Guo. 2013. Biocontrol of tomato wilt disease by Bacillus subtilis isolates from natural environments depends on conserved genes mediating biofilm formation. Environmental Microbiology, 15(3): 848–864.
Deveau A, Gross H, Palin B, Mehnaz S, Schnepf M, Leblond P, Dorrestein PC, Aigle B. 2016. Role of secondary metabolites in the interaction between Pseudomonas fluorescens and soil microorganisms under iron-limited conditions. FEMS Microbiol Ecol 92(8): fiw107. DOI: 10.1093/femsec/fiw107.
Egamberdieva, D., S.J. Wirth, A.A. Alqarawi, E.F. Abd_Allah, & A. Hashem. 2017. Phytohormones and beneficial microbes: Essential components for plants to balance stress and fitness. Front Microbiol. 8: 2104. DOI: 10.3389/fmicb.2017.02104.
Fahrunnida & R. Pratiwi. 2015. Kandungan saponin buah, daun dan tangkai daun belimbing wuluh (Averrhoa bilimbi L.). Jurnal FKIP UNS 1(1): 220-234.
Fishel FM. 2019. Pesticide effects on nontarget organisms. EDIS 2005(14). DOI: 10.32473/edis-pi122-2005.
Garcia, R.O., J.P. Kerns, & L. Thiessen. 2019. Ralstonia solanacearum species complex: a quick diagnostic guide. Plant Health Progress, 20: 7–13.
Gerlin, L., Escourrou, A., Cassan, C., Macia, F.M., Peeters, N., Genin, S., & Baroukh, C. 2021. Unravelling physiological signatures of tomato bacterial wilt and xylem metabolites exploited by Ralstonia solanacearum. Environ Microbiol 23(10): 5962-5978. DOI: 10.1111/1462-2920.15535.
Ghorab MA, & Khalil MS. 2016. The effect of pesticides pollution on our life and environment. Journal of Pollution Effects & Control 04(02). DOI: 10.4172/2375-4397.1000159.
Ghosh, P.P. & N.C. Mandal. 2009. Some disease management practices for bacterial wilt of potato. The Journal of Plant Protection Sciences 1(1): 51-54.
Kashyap, A., Planas-Marquès, M., Capellades, M., Valls, M., & Coll, N.S. 2021. Blocking intruders: inducible physico-chemical barriers against plant vascular wilt pathogens. Journal of Experimental Botany 72(2): 184–198. DOI: 10.1093/jxb/eraa444.
Keswani, C., Singh, H.B., García-Estrada, C., Caradus, J., He, Y.-W., Mezaache-Aichour, S., Glare, T.R., Borriss, R., & Sansinenea, E., 2020. Antimicrobial secondary metabolites from agriculturally important bacteria as next-generation pesticides. Appl Microbiol Biotechnol 104(3): 1013-1034. DOI: 10.1007/s00253-019-10300-8.
Khameneh, B., Iranshahy, M., Soheili, V., & Bazzaz, B.S.F. 2019. Review on plant antimicrobials: a mechanistic viewpoint. Antimicrobial Resistance & Infection Control 8(118). DOI: 10.1186/s13756-019-0559-6.
Kunwar S, Bamazi B, Banito A, Carter M, Weinstein S, Steidl OR, Hayes MM, Allen C, Pare ML. 2020. First report of bacterial wilt disease of tomato, pepper and gboma caused by the Ralstonia solanacearum species complex in Togo. Plant Disease 2020 Sep 18. DOI: 10.1094/PDIS-08-20-1665-PDN.
Labhasetwar AA, Bramhankar SB, Pillai TS, Isokar SS, Dinkwar GT, Bhure SS, Kharat VM. 2019. Biochemical and physiological characterizations of Pseudomonas fluorescens. International Journal of Chemical Studies 7(1): 1785-1788. https://www.chemijournal.com/archives/2019/vol7issue1/PartAE/7-1-99-413.pdf.
Manan, A., Mugiastuti, E. & Soesanto, L. 2018. Kemampuan campuran Bacillus sp., Pseudomonas fluorescens, dan Trichoderma sp. untuk mengendalikan penyakit layu bakteri pada tanaman tomat. Jurnal Fitopatologi Indonesia, 14(2): 63–68.
Manganiello, G., S. Traversari, B. Nesi, S. Cacini, & C. Pane. 2021. Rose: A new host plant of Fusarium clavum (F. incarnatum-equiseti species complex 5) causing brown spot of petals. Crop Protection 146: 105675. Doi: 10.1016/j.cropro.2021.105675.
McDonald, A.J.S., Ericsson, T., & Larsson, C.-M. 1996. Plant nutrition, dry matter gain and partitioning at the whole-plant level. Journal of Experimental Botany 47 Spec No (Special): 1245-1253. DOI: 10.1093/jxb/47.Special_Issue.1245.
Meliani, A., A. Bensoltane, L. Benidire, & K. Oufdou. 2017. Plant growth-promotion and IAA secretion with Pseudomonas fluorescens and Pseudomonas putida. Research & Reviews: Journal of Botanical Sciences 6(2): 16-24.
Misra, D., Dutta, W., Jha, G., & Ray, P. 2023. Interactions and regulatory functions of phenolics in soil-plant-climate nexus. Agronomy 13(2): 280. DOI: 10.3390/agronomy13020280.
Morgan, C.A., N. Herman, P.A.White, & G.Vesey. 2006. Preservation of micro-organisms by drying: A review. Journal of Microbiological Methods 66(2): 183-193. Doi: 10.1016/j.mimet.2006.02.017.
Nicholson, R.L. & Hammerschmidt, R. 2003. Phenolic compounds and their role in disease resistance. Annual Review of Phytopathology 30(1): 369-389. DOI: 10.1146/annurev.py.30.090192.002101.
Olaniyi JO, Akanbi WB, Adejumo TA, Akande OG. 2010. Growth, fruit yield and nutritional quality of tomato varieties. African Journal of Food Science 4(6): 398-402.
Paraschivu, M., O. Cotuna, & M. Paraschivu. 2013. the use of the area under the disease progress curve (AUDPC) to assess the epidemics of Septoria tritici in winter wheat. Research Journal of Agricultural Science 45(1): 193–201.
Prabhukarthikeyan, S.R. & T. Raguchander. 2016. Antifungal metabolites of Pseudomonas fluorescens against Pythium aphanidermatum. Journal of Pure and Applied Microbiology 10(1): 579-584.
Rudrappa, K.B., A.P. Suryawanshi, N.D. Punitkumar, J.K. Ganesh, K. Lambani, & R. Singh. 2018. Cultural and biochemical characterization of Ralstonia solanacearum causing bacterial wilt in tomato. Journal of Pure and Applied Microbiology 10(4): 3111-3115. Doi: 10.22207/JPAM.10.4.86.
Sabarwal A, Kumar K, Singh RP. 2018. Hazardous effects of chemical pesticides on human health-Cancer and other associated disorders. Environ Toxicol Pharmacol 63: 103-114. DOI: 10.1016/j.etap.2018.08.018.
Seleim MAA, Abo-Elyousr KAM, Abd-El-Moneem KM, Saead FA. 2014. First report of bacterial wilt caused by Ralstonia solanacearum biovar 2 race 1 on tomato in Egypt. Plant Pathol J 30(3): 299-303. DOI: 10.5423/PPJ.NT.10.2013.0101.
Shrestha, B.K., H.S. Karki, D.E. Groth, N. Jungkhun, & J.H. Ham. 2016. Biological control activities of rice-associated Bacillus sp. strains against sheath blight and bacterial panicle blight of rice. PLoS One 11(1): e0146764. Doi: 10.1371/journal.pone.0146764.
Simamora, M., M. Basyuni, & Lisnawita. 2021. Potency of secondary metabolites of Trichoderma asperellum and Pseudomonas fluorescens in the growth of cocoa plants affected by vascular streak dieback. BIODIVERSITAS, 22(5): 2542-2547.
Singh D, Yadav DK, Sinha S, Choudhary G. 2013. Effect of temperature, cultivars, injury of root and inoculums load of Ralstonia solanacearum to cause bacterial wilt of tomato. Archives of Phytopathology and Plant Protection 47(13): 1574-1583. DOI: 10.1080/03235408.2013.851332.
Singh S, Gautam RK, Singh DR, Sharma TVRS, Sakthivel K, Roy SD. 2015. Genetic approaches for mitigating losses caused by bacterial wilt of tomato in tropical islands. European Journal of Plant Pathology 143: 205–221. DOI: 10.1007/s10658-015-0690-z.
Soesanto, L., E. Mugiastuti, & R.F. Rahayuniati. 2010. Kajian mekanisme antagonis Pseudomonas fluorescens P60 terhadap Fusarium oxysporum f. sp. lycopersici pada tanaman tomat in vivo. Jurnal HPT Tropika 10(2): 108–115.
Soesanto, L., Mugiastuti, E. & Rahayuniati, R.F. 2011. Pemanfaatan beberapa kaldu hewan sebagai bahan formula cair Pseudomonas fluorescens P60 untuk mengendalikan Sclerotium rolfsii pada tanaman mentimun. Jurnal Perlindungan Tanaman Indonesia, 17(1): 7–17.
Soesanto, L., E. Mugiastuti, & R.F. Rahayuniati. 2014. Aplikasi formula cair Pseudomonas fluorescens P60 untuk menekan penyakit virus cabai merah. Jurnal Fitopatologi Indonesia, 9(6): 179–185.
Soesanto, L., E. Mugiastuti, & Khoeruriza. 2019. Granular formulation test of Pseudomonas fluorescens P60 for controling bacterial wilt (Ralstonia solanacearum) of tomato in planta. AGRIVITA Journal of Agricultural Science 41(3): 513–523. Doi: 10.17503/agrivita.v41i3.2318.
Soesanto L, Pradiptha CN, Mugiastuti E. 2021. Raw secondary metabolites of chitosan-enriched Pseudomonas fluorescens P60 to control corn sheath blight. Biosaintifika, 13(1): 113-120.
Suresh, P., S. Vellasamya, K.S. Almaary, T.M. Dawoud, & Y.B. Elbadawi. 2021. Fluorescent pseudomonads (FPs) as a potential biocontrol and plant growth promoting agent associated with tomato rhizosphere. Journal of King Saud University – Science 33(4): 101423. DOI: 10.1016/j.jksus.2021.101423.
Wang, G., Kong, J., Cui, D., Zhao, H., Niu, Y., Xu, M., Jiang, G., Zhao, Y., & Wang, W. 2019. Resistance against Ralstonia solanacearum in tomato depends on the methionine cycle and the ?-aminobutyric acid metabolic pathway. Plant J 97(6): 1032-1047. DOI: 10.1111/tpj.14175.
Velivelli SLS, Vos PD, Kromann P, Declerck S, Prestwich BD. 2014. Biological control agents: from field to market, problems, and challenges. Trends Biotechnol 32(10): 493-6. DOI: 10.1016/j.tibtech.2014.07.002.

Most read articles by the same author(s)

1 2 > >>