The antioxidant potential of copper oxide nanoparticles synthesized from a new bacterial strain

##plugins.themes.bootstrap3.article.main##

HASAN GHALI ABDULHASAN ALSHAMI
WIJDAN H. AL-TAMIMI
RASHID RAHIM HATEET

Abstract

Abstract. Alshami HGA, Al-Tamimi WH, Hateet RR. 2023. The antioxidant potential of copper oxide nanoparticles synthesized from a new bacterial strain. Biodiversitas 24: 2666-2673. Copper oxide nanoparticles (CuONPs) have recently gained much attention due to their potential in various fields. The present study aimed to screen nine bacterial strains (Klebsiella quasipneumoniae KP18-31, K. pneumoniae IOB-L, K. quasipneumoniae subsp. similipneumoniae 2437, Bacillus cereus DBA1, B. thuringiensis MSP51, Neobacillus drentensis ROA042, Enterococcus faecalis 2674, Exiguobacterium mexicanum AB201, and Acinetobacter lwoffii K34) isolated from produced water of oil field reservoirs for their ability to biosynthesize CuONPs, as well as characterize and evaluate the antioxidant potential of the manufactured CuONPs. Biosynthesized CuONPs were characterized using XRD, TEM, AFM, and zeta potential analysis. In addition, the DPPH method was used to analyze the antioxidant activity of CuONPs. The results revealed that five of the nine isolates could synthesize CuONPs. B. thuringiensis MSP5 was the best and most productive among them, and it was used for the first time in this present study as an oil field bacteria for the biosynthesis of CuONPs. The results showed that CuONPs have a spherical shape with an average size of 20, 33, and 75 nm based on XRD, TEM, and AFM analysis, respectively. The zeta potential value of the synthesized CuONPs was -12.4 mV. The antioxidant results demonstrated that CuONPs have a remarkable scavenging activity with an IC50 value of 141.68 ?g/mL. This study concluded that CuONPs were excellent free radical scavengers.

##plugins.themes.bootstrap3.article.details##

References
Abd-Elhalim B.T, Gamal R.F, Abou-Taleb Kh. A, Haroun A.A. 2019. Biosynthesis of Copper nanoparticles using bacterial supernatant optimized with certain agro-industrial byproducts. Novel Research in Microbiology Journal, 3(6), 558–578. https://doi.org/10.21608/nrmj.2019.66748.
Aboud E. M, Burghal A. A, Laftah A. H. 2021. Genetic identification of hydrocarbons degrading bacteria isolated from oily sludge and petroleum-contaminated soil in Basrah City, Iraq. Biodiversitas, 22(4), 1934–1939. https://doi.org/10.13057/biodiv/d220441
Al-seidy N. J, Taj-aldeen W. R. 2021. Activity of Biosynthetic Copper Oxide Nanoparticles by Lactobacillus Plantarum against Pathogenic Bacteria as Antibacterial Antibioflim and Antioxidant. Annals of the Romanian Society for Cell Biology, 25(6), 5224–5235.
Alfryyan N, Kordy M. G. M, Gabbar M. A, Soliman H. A, Shaban M. 2022. Characterization of the biosynthesized intracellular and extracellular plasmonic silver nanoparticles using Bacillus cereus and their catalytic reduction of methylene blue. Scientific Reports, 12(1), 1–14. https://doi.org/10.1038/s41598-022-16029-1
Ali M. A. A, Shareef A. A. 2021. Green Synthesis of Silver Nanoparticles by Enterobacter Aerogenes Bacteria in Combination with Antibiotics Against Multidrug Resistance Streptococcus Mitis Isolated from Oral Cavity of Some Dental Caries Patients in Misan City. Annals of the Romanian Society for Cell Biology, 25(4), 13768–13789.
Bukhari S. I, Hamed M. M, Al-Agamy M. H, Gazwi H. S. S, Radwan H. H, Youssif A. M. 2021. Biosynthesis of Copper Oxide Nanoparticles Using Streptomyces MHM38 and Its Biological Applications. Journal of Nanomaterials, 2021, 1–16. https://doi.org/10.1155/2021/6693302
Dulta K, Ko?arsoy A?çeli G, Chauhan P, Jasrotia R, Chauhan P. K, Ighalo J. O. 2022. Multifunctional CuO nanoparticles with enhanced photocatalytic dye degradation and antibacterial activity. Sustainable Environment Research, 32(1), 1–15.
El-shanshoury A. E. R, Ebeid E, Elsilk S, Ebeid M. E. 2020. Biogenic Synthesis of Gold Nanoparticles by Bacteria and Utilization of the Chemical Fabricated for Diagnostic Performance of Viral Hepatitis C Virus-NS4. Letters in Applied NanoBioScience, 9, 1395-1408. https://doi.org/10.33263/LIANBS93.13951408.
Eltarahony M, Zaki S, Abd-El-Haleem D. 2018. Concurrent synthesis of zero- and one-dimensional, spherical, rod-, needle-, and wire-shaped cuo nanoparticles by proteus mirabilis 10B. Journal of Nanomaterials, 2018, 1–15. https://doi.org/10.1155/2018/1849616.
Fariq A, Khan T, Yasmin A. 2017. Microbial synthesis of nanoparticles and their potential applications in biomedicine. Journal of Applied Biomedicine, 15(4), 241–248. https://doi.org/10.1016/j.jab.2017.03.004.
Flieger J, Flieger W, Baj J. 2021. Antioxidants: Classification, Natural Sources, Activity/Capacity Measurements, and Usefulness for the Synthesis of Nanoparticles. Materials, 14(15), 4135. https://doi.org/10.3390/ma14154135
Fouda A, Hassan S.E.D, Eid A. M, Awad M. A, Althumayri K, Badr N. F, Hamza M. F. 2022. Endophytic bacterial strain, Brevibacillus brevis -mediated green synthesis of copper oxide nanoparticles, characterization, antifungal, in vitro cytotoxicity, and larvicidal activity . Green Processing and Synthesis, 11(1), 931–950. https://doi.org/10.1515/gps-2022-0080.
Fouda A, Hassan S. E. D, Abdo A. M, El-Gamal M. S. 2020. Antimicrobial, Antioxidant and Larvicidal Activities of Spherical Silver Nanoparticles Synthesized by Endophytic Streptomyces spp. Biological Trace Element Research, 195(2), 707–724. https://doi.org/10.1007/s12011-019-01883-4.
Alshami H. G. A, Al-tamimi W. H, Hateet R. R. 2022. Screening for extracellular synthesis of silver nanoparticles by bacteria isolated from Al-Halfaya oil field reservoirs in Missan province , Iraq. B IOD I V E R S I T A S, 23(7), 3462–3470. https://doi.org/10.13057/biodiv/d230721.
Ghorbani H. R, Fazeli I, Fallahi A. A. 2015. Biosynthesis of copper oxide nanoparticles using extract of E.coli. Oriental Journal of Chemistry, 31(1), 515–517. https://doi.org/10.13005/ojc/310163.
Giri S. D, Sarkar A. 2016. Electrochemical Study of Bulk and Monolayer Copper in Alkaline Solution. Journal of The Electrochemical Society, 163(3), H252–H259. https://doi.org/10.1149/2.0071605jes.
Halder U, Roy R. K, Biswas R, Khan D, Mazumder K, Bandopadhyay R. 2022. Synthesis of copper oxide nanoparticles using capsular polymeric substances produced by Bacillus altitudinis and investigation of its efficacy to kill pathogenic Pseudomonas aeruginosa. Chemical Engineering Journal Advances, 11, 100294. https://doi.org/10.1016/j.ceja.2022.100294.
Hamida R. S, Ali M. A, Almohawes Z. N, Alahdal H, Momenah M. A, Bin-Meferij M. M. 2022. Green Synthesis of Hexagonal Silver Nanoparticles Using a Novel Microalgae Coelastrella aeroterrestrica Strain BA_Chlo4 and Resulting Anticancer, Antibacterial, and Antioxidant Activities. Pharmaceutics, 14(10), 1–28. https://doi.org/10.3390/pharmaceutics14102002.
Hassan S. E. D, Fouda A, Radwan A. A, Salem S. S, Barghoth M. G, Awad M. A, Abdo A. M, El-Gamal M. S. 2019. Endophytic actinomycetes Streptomyces spp mediated biosynthesis of copper oxide nanoparticles as a promising tool for biotechnological applications. Journal of Biological Inorganic Chemistry, 24(3), 377–393. https://doi.org/10.1007/s00775-019-01654-5.
Huq M. A, Akter S. 2021. Biosynthesis, characterization and antibacterial application of novel silver nanoparticles against drug resistant pathogenic klebsiella pneumoniae and salmonella enteritidis. Molecules, 26(19), 5996. https://doi.org/10.3390/molecules26195996.
Jaffer Al-Timimi I. A, Sermon P. A, Burghal A. A, Salih A. A, Alrubaya I. M. N. 2016. Nanoengineering the antibacterial activity of biosynthesized nanoparticles of TiO 2 , Ag, and Au and their nanohybrids with Portobello mushroom spore (PMS) (TiO x /PMS, Ag/PMS and Au/PMS) and making them optically self-indicating . Biosensing and Nanomedicine IX, 9930, 99300B. https://doi.org/10.1117/12.2237643.
Jang G. G, Jacobs C. B, Gresback R. G, Ivanov I. N, Meyer H. M, Kidder M, Joshi P. C, Jellison G. E, Phelps T. J, Graham D. E, Moon J. W. 2015. Size tunable elemental copper nanoparticles: Extracellular synthesis by thermoanaerobic bacteria and capping molecules. Journal of Materials Chemistry C, 3(3), 644–650. https://doi.org/10.1039/c4tc02356k.
Jayakumarai G, Gokulpriya C, Sudhapriya R, Sharmila G, Muthukumaran C. 2015. Phytofabrication and characterization of monodisperse copper oxide nanoparticles using Albizia lebbeck leaf extract. Applied Nanoscience (Switzerland), 5(8), 1017–1021. https://doi.org/10.1007/s13204-015-0402-1.
Khan I, Saeed K, Khan I. 2019. Nanoparticles: Properties, applications and toxicities. Arabian Journal of Chemistry, 12(7), 908–931. https://doi.org/10.1016/j.arabjc.2017.05.011.
Khan Z. U. H, Khan A, Chen Y, Shah N. S, Muhammad N, Khan A. U, Tahir K, Khan F. U, Murtaza B, Hassan S. U, Qaisrani S. A, Wan P. 2017. Biomedical applications of green synthesized Nobel metal nanoparticles. Journal of Photochemistry and Photobiology B: Biology, 173, 150–164. https://doi.org/10.1016/j.jphotobiol.2017.05.034.
Kotakadi V. S, Gaddam S. A, Venkata S. K, Sarma P. V. G. K, Sai Gopal D. V. R. 2016. Biofabrication and spectral characterization of silver nanoparticles and their cytotoxic studies on human CD34 +ve stem cells. 3 Biotech, 6(2), 1–11. https://doi.org/10.1007/s13205-016-0532-5.
Kouhkan M, Ahangar P, Babaganjeh L. A, Allahyari-Devin M. 2019. Biosynthesis of Copper Oxide Nanoparticles Using Lactobacillus casei Subsp. Casei and its Anticancer and Antibacterial Activities. Current Nanoscience, 16(1), 101–111. https://doi.org/10.2174/1573413715666190318155801.
Kuyukina M. S, Makarova M. V, Ivshina I. B, Kazymov K. P, Osovetsky B. M. 2022. Biosynthesis and Characterization of Gold Nanoparticles Produced Using Rhodococcus Actinobacteria at Elevated Chloroauric Acid Concentrations. International Journal of Molecular Sciences, 23(21), 12939. https://doi.org/10.3390/ijms232112939.
Liu X, Chen J. L, Yang W. Y, Qian Y. C, Pan J. Y, Zhu C. N, Liu L, Ou W. Bin, Zhao H. X, Zhang D. P. 2021. Biosynthesis of silver nanoparticles with antimicrobial and anticancer properties using two novel yeasts. Scientific Reports, 11(1), 1–12. https://doi.org/10.1038/s41598-021-95262-6.
Marooufpour N, Alizadeh M, Hatami M, Asgari Lajayer B. 2019. Biological Synthesis of Nanoparticles by Different Groups of Bacteria. Nanotechnology in the Life Sciences,1, 63–85. https://doi.org/10.1007/978-3-030-16383-9_3.
Martemucci G, Costagliola C, Mariano M, D’andrea L, Napolitano P, D’Alessandro A. G. 2022. Free Radical Properties, Source and Targets, Antioxidant Consumption and Health. Oxygen, 2(2), 48–78. https://doi.org/10.3390/oxygen2020006.
Mujaddidi N, Nisa S, Al Ayoubi S, Bibi Y, Khan S, Sabir M, Zia M, Ahmad S, Qayyum A. 2021. Pharmacological properties of biogenically synthesized silver nanoparticles using endophyte Bacillus cereus extract of Berberis lyceum against oxidative stress and pathogenic multidrug-resistant bacteria. Saudi Journal of Biological Sciences, 28(11), 6432–6440. https://doi.org/10.1016/j.sjbs.2021.07.009.
Nabila M. I, Kannabiran K. 2018. Biosynthesis, characterization and antibacterial activity of copper oxide nanoparticles (CuO NPs) from actinomycetes. Biocatalysis and Agricultural Biotechnology, 15, 56–62. https://doi.org/10.1016/j.bcab.2018.05.011.
Nadeem M, Khan R, Afridi K, Nadhman A, Ullah S, Faisal S, Mabood Z. U, Hano C, Abbasi B. H. 2020. Green synthesis of cerium oxide nanoparticles (Ceo2 nps) and their antimicrobial applications: A review. International Journal of Nanomedicine, 15, 5951–5961. https://doi.org/10.2147/IJN.S255784.
Pallavi S. S, Rudayni H. A, Bepari A, Niazi S. K, Nayaka S. 2022. Green synthesis of Silver nanoparticles using Streptomyces hirsutus strain SNPGA-8 and their characterization, antimicrobial activity, and anticancer activity against human lung carcinoma cell line A549. Saudi Journal of Biological Sciences, 29(1), 228–238. https://doi.org/10.1016/j.sjbs.2021.08.084.
Patil S, Chandrasekaran R. 2020. Biogenic nanoparticles: a comprehensive perspective in synthesis, characterization, application and its challenges. Journal of Genetic Engineering and Biotechnology, 18, 1–23. https://doi.org/10.1186/s43141-020-00081-3.
Qais F. A, Shafiq A, Khan H. M, Husain F. M, Khan R. A, Alenazi B, Alsalme A, Ahmad I. 2019. Antibacterial effect of silver nanoparticles synthesized using Murraya koenigii (L.) against multidrug-resistant pathogens. Bioinorganic Chemistry and Applications, 2019, https://doi.org/10.1155/2019/4649506.
Qamar H, Rehman S, Chauhan D. K, Tiwari A. K, Upmanyu V. 2020. Green synthesis, characterization and antimicrobial activity of copper oxide nanomaterial derived from Momordica charantia. International Journal of Nanomedicine, 15, 2541–2553. https://doi.org/10.2147/IJN.S240232.
Qazi M. A, Molvi K. I. 2018. Free Radicals and their Management. American Journal of Pharmacy And Health Research, 6(4), 1–10. https://doi.org/10.46624/ajphr.2018.v6.i4.001.
Rad M, Taran M, Alavi M. 2018. Effect of incubation time, CuSO4 and glucose concentrations on biosynthesis of copper oxide (CuO) nanoparticles with rectangular shape and antibacterial activity: Taguchi method approach. Nano Biomedicine and Engineering, 10(1), 25–33. https://doi.org/10.5101/nbe.v10i1.p25-33.
Rahman M. M, Islam M. B, Biswas M, Khurshid Alam A. H. M. 2015. In vitro antioxidant and free radical scavenging activity of different parts of Tabebuia pallida growing in Bangladesh. BMC Research Notes, 8(1), 1–9. https://doi.org/10.1186/s13104-015-1618-6.
Rasool U, Hemalatha S. 2017. Marine endophytic actinomycetes assisted synthesis of copper nanoparticles (CuNPs): Characterization and antibacterial efficacy against human pathogens. Materials Letters, 194, 176–180. https://doi.org/10.1016/j.matlet.2017.02.055.
Reddy K. R. 2017. Green synthesis, morphological and optical studies of CuO nanoparticles. Journal of Molecular Structure, 1150, 553–557. https://doi.org/10.1016/j.molstruc.2017.09.005.
Santhosh Kumar J, Shanmugam V. 2020. Green Synthesis of Copper Oxide Nanoparticles from Magnolia Champaca Floral Extract and its Antioxidant & Toxicity Assay using Danio Rerio. International Journal of Recent Technology and Engineering (IJRTE), 8(5), 5444–5449. https://doi.org/10.35940/ijrte.e6869.018520.
Sathiyavimal S, Vasantharaj S, Bharathi D, Saravanan M, Manikandan E, Kumar S. S, Pugazhendhi A. 2018. Biogenesis of copper oxide nanoparticles (CuONPs) using Sida acuta and their incorporation over cotton fabrics to prevent the pathogenicity of Gram negative and Gram positive bacteria. Journal of Photochemistry and Photobiology B: Biology, 188, 126–134. https://doi.org/10.1016/j.jphotobiol.2018.09.014.
Shareef A. A, Alriyahee F. A. A, Hasan Z. A, Kadhim M. A, Al-Mussawi A. A. 2021. BIOGENIC SYNTHESIS OF SILVER NANOPARTICLES BY SEDILITIZIA ROSMARINUS BOISS SHOOT EXTRACT AND ITS ANTIBACTERIAL ACTIVITY AGAINST MDR BACTERIA. Turkish Journal of Physiotherapy and Rehabilitation, 32(3), 6746- 6756.
Silva T. R, Verde L. C. L, Santos Neto E. V, Oliveira V. M. 2013. Diversity analyses of microbial communities in petroleum samples from Brazilian oil fields. International Biodeterioration and Biodegradation, 81, 57–70. https://doi.org/10.1016/j.ibiod.2012.05.005.
Singh H, Du J, Singh P, Yi T. H. 2018. Extracellular synthesis of silver nanoparticles by Pseudomonas sp. THG-LS1.4 and their antimicrobial application. Journal of Pharmaceutical Analysis, 8(4), 258–264. https://doi.org/10.1016/j.jpha.2018.04.004.
Slavin Y. N, Asnis J, Häfeli U. O, Bach H. 2017. Metal nanoparticles: Understanding the mechanisms behind antibacterial activity. Journal of Nanobiotechnology, 15, 1–20. https://doi.org/10.1186/s12951-017-0308-z.
Valentina Y. 2022. Optimisation of Reactant Concentration in Biosynthesis of Silver Nanoparticles using Pathogenic Bacteria Isolated from Clinical Sources and their Characterisation: A Recent Study. Innovations in Microbiology and Biotechnology Vol. 3, 45–55. https://doi.org/10.9734/bpi/imb/v3/1732a.
Wang X, Lee S.Y, Akter S, Huq M. A. 2022. Probiotic-Mediated Biosynthesis of Silver Nanoparticles and Their Antibacterial Applications against Pathogenic Strains of Escherichia coli O157:H7. Polymers, 14(9), 1834. https://doi.org/10.3390/polym14091834.
Yasin A, Fatima U, Shahid S, Mansoor S, Inam H, Javed M, Iqbal S, Alrbyawi H, Somaily H. H, Pashameah R. A, Alzahrani E, Farouk A. E. 2022. Fabrication of Copper Oxide Nanoparticles Using Passiflora edulis Extract for the Estimation of Antioxidant Potential and Photocatalytic Methylene Blue Dye Degradation. Agronomy, 12(10), 2315. https://doi.org/10.3390/agronomy12102315.
Yedurkar S. M, Maurya C. B, Mahanwar P. A. 2017. A biological approach for the synthesis of copper oxide nanoparticles by ixora coccinea leaf extract. Journal of Materials and Environmental Science, 8(4), 1173–1178.