Improvement of antimicrobial activity of Pediococcus pentosaceus strain 2397 in suppressing Escherichia coli

##plugins.themes.bootstrap3.article.main##

EMMA RIFTYAN
https://orcid.org/0000-0001-7919-4319
YUSMARINI
https://orcid.org/0000-0002-8879-4030
EVY ROSSI
https://orcid.org/0000-0002-6900-3002
USMAN PATO
https://orcid.org/0000-0001-7716-5282

Abstract

Abstract. Riftyan E, Yusmarini, Rossi E, Pato U. 2024. Improvement of antimicrobial activity of Pediococcus pentosaceus strain 2397 in suppressing Escherichia coli. Biodiversitas 25: 2500-2506. Lactic acid bacteria exhibit antibacterial activity that suppresses spoilage and pathogenic bacteria. Due to their antagonistic action against foodborne pathogens such as Escherichia coli, LAB isolated from dairy products have attracted considerable attention as a potential food preservative. Furthermore, bioactive compounds generated by forming LAB biofilms may exhibit efficacy against pathogenic microorganisms and their toxin. Combining LAB biofilms and other LAB products, such as bacteriocins, could offer a significant method against pathogenic microorganisms and their biofilms. The aim of this study was to evaluate the effects of optimization of media composition and incubation conditions on the antimicrobial activities of cell-free supernatant (CFS) from Pediococcus pentosaceus strain 2397 to inhibit E. coli FNCC-19. The antimicrobial activity of CFS was determined using agar well diffusion method. The results revealed that antimicrobial activity of P. pentosaceus strain 2397 was enhanced by optimizing the media composition and incubation conditions. Pediococcus pentosaceus strain 2397 exhibited excellent antimicrobial activity against E. coli. In MRS, 5% (v/v) of P. pentosaceus strain 2397+2.0% (w/v) yeast extract with pH 7.0 showed an inhibition zone of 10.44 mm. Therefore, strain 2397 may be effective in producing bacteriocin as a preservative for food products.

##plugins.themes.bootstrap3.article.details##

References
Alvarez-Sieiro P, Montalbán-López M, Mu D, Kuipers O P. 2016. Bacteriocins of lactic acid bacteria: extending the family. Appl Microbiol Biotechnol 100 (7): 2939–2951. DOI:10.1007/s00253-016-7343-9.
Barrera S, Cardenas P, Graham JP, Trueba G. 2019. Changes in dominant Escherichia coli and antimicrobial resistance after 24 hr in fecal matter. MicrobiologyOpen 8 (2): e00643. DOI:10.1002/mbo3.643.
Berendes D, Kirby A, Brown J, Wester AL. 2020. Human faeces-associated extended-spectrum ?-lactamase-producing Escherichia coli discharge into sanitation systems in 2015 and 2030: a global and regional analysis. Lancet Planet Health 4 (6): e246–e255. DOI:10.1016/S2542-5196(20)30099-1
Bharal A, Sohpal VK. 2013. Evaluation of Antimicrobial Activity of Bacteriocin (L. acidophilus) against human pathogenic and food born microorganisms. Int. J Innov Res Sci 2 (9): 4221–4225.
Bharti V, Mehta A, Singh S, Jain N, Ahirwal L, Mehta S. 2015. Bacteriocin: A novel approach for preservation of food. Int J Pharm Pharm Sci 7 (9): 20–29. https://innovareacademics.in/journals/index.php/ijpps/article/view/6937.
Danial EN, Al-Zahrani SHM, Al-Mahmoudi ZAHM. 2016. Enhancement of novel extracellular bacteriocin production by media optimization using LAB isolate from meat. J Appl Pharma Sci 6 (12): 020–027. DOI:10.7324/JAPS.2016.601203.
Dodamani S, Kaliwal B, Kaliwal BB. 2014. Production of bacteriocin by Lactococcus garvieae and influence of various supplements on its antimicrobial activity. Indo American J Pharma Research 4 (01): 9435-9537. www.iajpr.comhttp://www.iajpr.com/index.php/en/
Fahim HA, Rouby WMAE, El-Gendy AO, Khairalla AS, Naguib IA, Farghali AA. 2017. Enhancement of the productivity of the potent bacteriocin avicin A and improvement of its stability using nanotechnology approaches. Sci Rep 7 (1): 1–13. DOI:10.1038/s41598-017-10157-9.
Fernandez B, le Lay C, Jean J, Fliss I. 2013. Growth, acid production and bacteriocin production by probiotic candidates under simulated colonic conditions. J App Microb 114 (3): 877–885. DOI:10.1111/jam.12081.
Gautam N, Sharma N, Ahlawat OP. 2014. Purification and Characterization of Bacteriocin Produced by Lactobacillus brevis UN Isolated from Dhulliachar: a Traditional Food Product of North East India. Indian J Microb 54 (2): 185–189. DOI:10.1007/s12088-013-0427-7.
Guinane CM, Piper C, Draper LA, O’Connor PM, Hill C, Paul Ross R, Cotter PD. 2015. Impact of environmental factors on bacteriocin promoter activity in gut-derived Lactobacillus salivarius. App Environ Microb 81 (22): 7851–7859. DOI:10.1128/AEM.02339-15.
Hegarty JW, Guinane CM, Ross RP, Hill C, Cotter PD. 2016. Bacteriocin production: A relatively unharnessed probiotic trait?. In F1000Research (5). DOI:10.12688/f1000research.9615.1,
Jawan R, Abbasiliasi S, Tan JS, Mustafa S, Halim M, Ariff AB. 2020. Influence of culture conditions and medium compositions on the production of bacteriocin-like inhibitory substances by Lactococcus lactis Gh1. Microorganisms 8 (10): 1454. DOI:10.3390/microorganisms8101454,
Kaur R, and Kumar TS. 2017. Optimization of Culture Conditions for Bacteriocin Production by Soil Isolates Pediococcus pentosaceus LB44 and Weissella confusa LM85. Int J Infec 4 (3). DOI:10.5812/iji.15842.
Lim ES. 2016. Inhibitory effect of bacteriocin-producing lactic acid bacteria against histamine-forming bacteria isolated from Myeolchi-jeot. Fish and Aqua Sci 19 (1). DOI:0.1186/s41240-016-0040-x.
Mabrouk AMM, Effat B, Hassan ZMR. 2015. Antibacterial activity of some Lactic acid Bacteria isolated from Egyptian Dairy Products. Inter J of ChemTech Research 6 (2): 1139-1150. http://www.sphinxsai.com/framesphinxsaichemtech.htm
Malheiros PS, Sant’Ann V, Todorov SD, Franco BDGM. 2015. Optimization of growth and bacteriocin production by Lactobacillus sakei subsp. Sakei 2a. Brazil J of Microb 46 (3): 825–834. DOI:10.1590/S1517-838246320140279.
Merck. 2023. MRS broth Lactobacillus broth acc. to De man, Rogosa and Sharpe for microbiology granucult®. https://www.merckmillipore.com/ID/id/product/MRS-broth,MDA_CHEM-110661.
Mohamed T. 2019. Chapter 13 - Control Strategy for Postharvest Microbiological Safety of Animal Products During Processing, Marketing, and Quality Measures. Safety and Practice for Organic Food. Academic Press. 271–289. DOI: 10.1016/B978-0-12-812060-6.00013-1.
Kumar KN, Devadas SM, Murugan S, Krishnan G, Thayumanavan T. 2018. Production and characterization of bacteriocin by lactic acid bacterium-Pediococcus pentosaceus NKSM1 isolated from fermented ‘appam’ batter. J of Pure and App Microb 12 (3): 1315–1330. DOI:10.22207/JPAM.12.3.34.
Parlindungan E, Dekiwadia C, Jones OAH. 2021. Factors that influence growth and bacteriocin production in Lactiplantibacillus plantarum B21. Pro Biochem 107: 18–26. DOI:10.1016/j.procbio.2021.05.009.
Pato U, Yusuf Y, Fitriani S, Jonnaidi NNN, Wahyuni MS, Feruni JA, Jaswir I. 2021. Antimicrobial Activity of Lactic Acid Bacteria Strains Isolated from Dadih against Escherichia coli. IOP Conf Series: Earth and Environ Sci, 709 (1). DOI:10.1088/1755-1315/709/1/012019.
Pato U, Yusuf Y. Fitriani S, Jonnadi NN, Wahyuni MS, Feruni JA, Jaswir I. 2020. Inhibitory activity of crude bacteriocin produced by lactic acid bacteria isolated from dadih against Listeria monocytogenes. Biodiv J of Bio Div 21 (4): 1295–1302. DOI:10.13057/biodiv/d210404.
Pato U, Yusuf Y, Fitriani S, Tartila, Yeni R, Fadillah F, Husnanini L. 2020. Enhancement of the growth and antimicrobial activity of Pediococcus pentosaceus Strain 2397 against Staphylococcus aureus. Biotechnology 20 (1): 8–14. DOI:10.3923/biotech.2021.8.14.
Pato U, Yusuf Y, Fitriani S, Fadilah F, Husnaini L, Yeni R, Fuadi I, Yusuf R. 2021. Optimization of bacteriocin production by Pediococcus pentosaceus 2397 in inhibiting Pectobacterium carotovorum subsp. carotovorum. Bulgarian J Agri Sci 27 (6): 1100-1107. https://journal.agrojournal.org/page/en/details.php?article_id=3651.
Polikanov YS, Aleksashin NA, Beckert B, Wilson DN. 2018. The mechanisms of action of ribosome-targeting peptide antibiotics. Fron Mol Biosci 5 (48): 1–21. DOI:10.3389/fmolb.2018.00048.
Rakhmanova A, Khan ZA, Shah K. 2018. A mini review fermentation and preservation: role of Lactic Acid Bacteria. MOJ Food Processing & Technology, 6 (5): 414–417. DOI:10.15406/mojfpt.2018.06.197.
Rossi E, Ali A, Efendi R, Restuhadi F, Zalfiatri Y, Sofyan Y, Aritonang SN, Purwati E. 2021. Characterization of bacteriocin produced by lactic acid bacteria isolated from solid waste of soymilk production. IOP Conf Ser: Earth Environ Sci, 709 (1). DOI:10.1088/1755-1315/709/1/012020.
Saeed M, Khan W, Shabbir M, Khan M, Atif M. 2014. Bacteriocins as a natural antimicrobial agent in food preservation: A review. Pakistan J Food Sci 24 (4): 244–255.
Saraniya A, Jeevaratnam K. 2014. Optimization of nutritional and non-nutritional factors involved for production of antimicrobial compounds from Lactobacillus pentosus SJ65 using response surface methodology. Brazil J Microb 45 (1): 81–88. DOI:10.1590/S1517-83822014000100012.
Sure KP, Kotnis PV, Bhagwat PK, Ranveer RC, Dandge PB, Sahoo AK. 2016. Production and characterization of bacteriocin produced by Lactobacillus viridescence (NICM 2167). Braz Arch Bio Techol 59. DOI:10.1590/1678-4324-2016150518.
Suresh M, Iyapparaj P, Anantharaman P. 2014). Optimization, characterization and partial purification of bacteriocin produced by Staphylococcus haemolyticus MSM an isolate from seaweed. Biocatal Agril Biotechnol 3 (4): 161–166. DOI:10.1016/J.BCAB.2014.08.005.
Syukur S, Fachrial E, Jamsari A. 2014. Isolation, antimicrobial activity and protein bacteriocin characterization of lactic acid bacteria isolated from Dadih in Solok, West Sumatera, Indonesia. Res J Pharm Bio Chem Sci 5 (6): 1096–1104.
Torso LM, Voorhees RE, Forest SA, Gordon AZ, Silvestri SA, Kissler B, Schlackman J, Sandt CH, Toma P, Bachert J, Mertz KJ, Harrison LH. 2015. Escherichia coli O157:H7 outbreak associated with restaurant beef grinding. J Food Protect 78 (7): 1272–1279. DOI:10.4315/0362-028X.JFP-14-545.
Turgis M, Vu KD, Millette M, Dupont C, Lacroix M. 2016. Influence of environmental factors on bacteriocin production by human isolates of Lactococcus lactis MM19 and Pediococcus acidilactici MM33. Probiotics & Antimicro Prot 8 (1): 53–59. DOI:10.1007/s12602-015-9204-8.
World Health Organization. 2018. E. coli. https://www.who.int/news-room/fact-sheets/detail/e-coli.
Yi Y, Li P, Zhao , Zhang T, Shan Y, Wang X, Liu B, Chen Y, Zhao X, Lü X. 2022. Current status and potentiality of class II bacteriocins from lactic acid bacteria: structure, mode of action and applications in the food industry. Trends in Food Sci & Technol 120: 387–401. DOI:10.1016/j.tifs.2022.01.018.
Zhang J, Yang Y, Yang H, Bu Y, Yi H, Zhang L, Han X, Ai L. 2018. Purification and partial characterization of bacteriocin Lac-B23, a novel bacteriocin production by Lactobacillus plantarum J23, isolated from Chinese traditional fermented milk. Front in Microb 9. DOI:10.3389/fmicb.2018.02165.
Zhang T, Zhang Y, Li L, Jiang X, Chen Z, Zhao F, Yi Y. 2022. Biosynthesis and production of class ii bacteriocins of food-associated lactic acid bacteria. Fermentation 8 (5): 217. DOI:10.3390/fermentation8050217.

Most read articles by the same author(s)