Physicochemical and microbiological properties of yogurt made with microencapsulation probiotic starter during cold storage
##plugins.themes.bootstrap3.article.main##
Abstract
Abstract. Rossi E, Restuhadi F, Efendi R, Dewi YK. 2021. Physicochemical and microbiological properties of yogurt made with microencapsulation probiotic starter during cold storage. Biodiversitas 22: 2012-2018. This study's purposes were to characterize probiotic properties, identify strains of K12.1, produce a microencapsulated starter (MS) for yogurt, and evaluate yogurt's microbiological quality during storage refrigerated temperatures. This research was conducted experimentally using isolate was further identified based on 16S rRNA gene sequence analysis. The identified strain and Streptococcus thermophilus were microencapsulated using sago starch and whey isolate protein (1:1 w/w) for yogurt starter. The starter was added as much as 1, 3, 5, or 7% (v / v), then incubated for 18 hours at 37°C. The best yogurt was evaluated for its microbiological quality at refrigerated temperature for 0, 7, 14, 21, and 28 days. The results showed that K12.1 isolate with probiotic characteristics was Lactobacillus plantarum VP3.3. The microencapsulation starter concentration affected acidity, total acid, total lactic acid bacteria (LAB), viscosity, and total solids. The use of 7% microencapsulation starter of Lactobacillus plantarum VP-3.3 and Streptococcus thermophilus gave the best yogurt, with a pH value 4.36, total lactic acid 0.99%, total LAB 10.00 log CFU mL-1, viscosity 546.37 cP, and total solids 10.40%. The total amount of LAB in yogurt stored during cold temperature for 28 days still meets the probiotics standards (9.98 log CFU/mL).
##plugins.themes.bootstrap3.article.details##
AOAC. 2012. Official Method of Analysis: Association of Analytical Chemists. 19th Edition. Washington DC.
Aritonang, S. N., Roza, E., Rossi, E., Purwati, E., & Husmaini. (2017). Isolation and identification of lactic acid bacteria from okara and evaluation of their potential as candidate probiotics. Pakistan Journal of Nutrition, 16(8), 618–628. https://doi.org/10.3923/pjn.2017.618.628
Cheow, W. S., & Hadinoto, K. (2013). Biofilm-like Lactobacillus rhamnosus probiotics encapsulated in alginate and carrageenan microcapsules exhibiting enhanced thermotolerance and freeze-drying resistance. Biomacromolecules, 14(9), 3214–3222. https://doi.org/10.1021/bm400853d
Collado, M. C., Gueimonde, M., Sanz, Y., & Salminen, S. (2006). Adhesion properties and competitive pathogen exclusion ability of bifidobacteria with acquired acid resistance. Journal of Food Protection, 69(7), 1675–1679. https://doi.org/10.4315/0362-028X-69.7.1675
Collado, M. C., Surono, I., Meriluoto, J., & Salminen, S. (2007). Indigenous dadih lactic acid bacteria: Cell-surface properties and interactions with pathogens. Journal of Food Science, 72(3). https://doi.org/10.1111/j.1750-3841.2007.00294.x
Corcoran, B. M., Stanton, C., Fitzgerald, G. F., & Ross, R. P. (2005). Survival of probiotic lactobacilli in acidic environments is enhanced in the presence of metabolizable sugars. Applied and Environmental Microbiology, 71(6). https://doi.org/10.1128/AEM.71.6.3060-3067.2005
Del Re, B., Sgorbati, B., Miglioli, M., & Palenzona, D. (2000). Adhesion, autoaggregation and hydrophobicity of 13 strains of Bifidobacterium longum. Letters in Applied Microbiology, 31(6), 438–442. https://doi.org/10.1046/j.1365-2672.2000.00845.x
Desmond, C., Ross, R. P., O’Callaghan, E., Fitzgerald, G., & Stanton, C. (2002). Improved survival of Lactobacillus paracasei NFBC 338 in spray-dried powders containing gum acacia. Journal of Applied Microbiology, 93(6), 1003–1011. https://doi.org/10.1046/j.1365-2672.2002.01782.x
Donkor, O. N., Henriksson, A., Vasiljevic, T., & Shah, N. P. (2006). Effect of acidification on the activity of probiotics in yoghurt during cold storage. International Dairy Journal, 16(10), 1181–1189. https://doi.org/10.1016/j.idairyj.2005.10.008
Donkor, O. N., Nilmini, S. L. I., Stolic, P., Vasiljevic, T., & Shah, N. P. (2007). Survival and activity of selected probiotic organisms in set-type yoghurt during cold storage. International Dairy Journal, 17(6), 657–665. https://doi.org/10.1016/j.idairyj.2006.08.006
El-Kholy, W. M., Aamer, R. A., & Ali, A. N. (2020). Utilization of inulin extracted from chicory (Cichorium intybus L.) roots to improve the properties of low-fat synbiotic yoghurt. Annals of Agricultural Sciences, 65(1), 59–67. https://doi.org/10.1016/j.aoas.2020.02.002
Hata, T., Tanaka, R., & Ohmomo, S. (2010). Isolation and characterization of plantaricin ASM1: A new bacteriocin produced by Lactobacillus plantarum A-1. International Journal of Food Microbiology, 137(1), 94–99. https://doi.org/10.1016/j.ijfoodmicro.2009.10.021
Hawaz, E. (2014). Isolation and identification of probiotic lactic acid bacteria from curd and in vitro evaluation of its growth inhibition activities against pathogenic bacteria. African Journal of Microbiology Research, 8(13), 1419–1425. http://www.academicjournals.org/journal/AJMR/article-full-text-pdf/D80ED0B46925
Howarth, G. S., & Wang, H. (2013). Role of endogenous microbiota, probiotics and their biological products in human health. Nutrients, 5(1), 58–81. https://doi.org/10.3390/nu5010058
Hugo, A. A., Kakisu, E., De Antoni, G. L., & Pérez, P. F. (2008). Lactobacilli antagonize biological effects of enterohaemorrhagic Escherichia coli in vitro. Letters in Applied Microbiology, 46(6), 613–619. https://doi.org/10.1111/j.1472-765X.2008.02363.x
Kassaian, N., Feizi, A., Aminorroaya, A., & Amini, M. (2019). Probiotic and synbiotic supplementation could improve metabolic syndrome in prediabetic adults: A randomized controlled trial. Diabetes and Metabolic Syndrome: Clinical Research and Reviews, 13(5), 2991–2996. https://doi.org/10.1016/j.dsx.2018.07.016
Kumar, B. V., Vijayendra, S. V. N., & Reddy, O. V. S. (2015). Trends in dairy and non-dairy probiotic products - a review. Journal of Food Science and Technology, 52(10), 6112–6124. https://doi.org/10.1007/s13197-015-1795-2
Lee, W. J., & Lucey, J. A. (2010). Formation and physical properties of yogurt. Asian-Australasian Journal of Animal Sciences, 23(9), 1127–1136. https://doi.org/10.5713/ajas.2010.r.05
Maleki, O., Khaledabad, M. A., Amiri, S., Asl, A. K., & Makouie, S. (2020). Microencapsulation of Lactobacillus rhamnosus ATCC 7469 in whey protein isolate-crystalline nanocellulose-inulin composite enhanced gastrointestinal survivability. Lwt, 126, 109224. https://doi.org/10.1016/j.lwt.2020.109224
Matela, K. S., Pillai, M. K., & Thamae, T. (2019). Evaluation of pH, titratable acidity, syneresis and sensory profiles of some yoghurt samples from the kingdom of Lesotho. Food Research, 3(6), 693–697. https://doi.org/10.26656/fr.2017.3(6).177
Melia, S., Purwati, E., Kurnia, Y. F., & Pratama, D. H. (2019). Antimicrobial potential of Pediococcus acidilactici from Bekasam, fermentation of sepat rawa fish (Tricopodus trichopterus) from Banyuasin, South Sumatra, Indonesia.pdf. Biodiversitas, 20, 3532–3538.
Oladipo, I. C., Atolagbe, O. O., & Adetiba, T. M. (2014). Nutritional evaluation and microbiological analysis of yoghurt produced from full cream milk , tiger-nut milk , skimmed milk and fresh cow milk. Pensee Journal, 76(4), 30–38. https://www.researchgate.net/publication/305299045_Nutritional_evaluation_and_microbiological_analysis_of_yoghurt_produced_from_full_cream_milk_tiger-nut_milk_skimmed_milk_and_fresh_cow_milk
Öz, E., Kaban, G., Bar??, Ö., & Kaya, M. (2017). Isolation and identification of lactic acid bacteria from past?rma. Food Control, 77, 158–162. http://www.sciencedirect.com/science/article/pii/S0956713517300634
Pan, X., Chen, F., Wu, T., Tang, H., & Zhao, Z. (2009). The acid, bile tolerance and antimicrobial property of Lactobacillus acidophilus NIT. Food Control, 20(6), 598–602. https://doi.org/10.1016/J.FOODCONT.2008.08.019
Rajam, R., Karthik, P., Parthasarathi, S., Joseph, G. S., & Anandharamakrishnan, C. (2012). Effect of whey protein - alginate wall systems on survival of microencapsulated Lactobacillus plantarum in simulated gastrointestinal conditions. Journal of Functional Foods, 4(4), 891–898. https://doi.org/10.1016/j.jff.2012.06.006
Roberts, D., & Greenwood, M. (2003). Practical Food Microbiology (M. Greenwood (ed.); Thirth). blackwell Publishing Ltd.
Rossi, E., Roza, E., Sofyan, Y., Aritonang, S. N., & Purwati, E. (2018a). Characterization of probiotics properties of lactobacillus from solid waste of soy milk production. Asian Journal of Microbiology, Biotechnology and Environment. http://www.envirobiotechjournals.com/article_abstract.php?aid=8962&iid=260&jid=1
Rossi, E., Roza, E., Sofyan, Y., Aritonang, S. N., & Purwati, E. (2018b). Characterization of probiotics properties of lactobacillus from solid waste of soy milk production. Asian Jr. of Microbiol. Biotech. Env. Sc, 20(3), 718–724.
Salminen, S., Bouley, C., Boutron, M.-C., Cummings, J. H., Franck, A., Gibson, G. R., Isolauri, E., Moreau, M.-C., Roberfroid, M., & Rowland, I. (1998). Functional food science and gastrointestinal physiology and function. British Journal of Nutrition, 80(S1), S147–S171. https://doi.org/10.1079/bjn19980108
Salminen, S., & Wright, A. V. (2011). Probiotics?: Safety and Efficacy. In Lactic Acid Bacteria?: Microbiological and Functional Aspects (pp. 689–706).
Sánchez-Ortiz, A., & Luna-González, A. (2015). Isolation and characterization of potential probiotic bacteria from pustulose ark (Anadara tuberculosa) suitable for shrimp farming/Aislamiento y caracterización de. American Journal of …, 43(1), 123=136. http://search.proquest.com/openview/b1a4c5cc6caffd4eee699d3848e88010/1?pq-origsite=gscholar&cbl=54924
Sarwar, A., Aziz, T., Al-Dalali, S., Zhao, X., Zhang, J., Ud Din, J., Chen, C., Cao, Y., & Yang, Z. (2019). Physicochemical and microbiological properties of synbiotic yogurt made with probiotic yeast saccharomyces boulardii in combination with inulin. Foods, 8(10). https://doi.org/10.3390/foods8100468
Shi, L. E., Li, Z. H., Li, D. T., Xu, M., Chen, H. Y., Zhang, Z. L., & Tang, Z. X. (2013). Encapsulation of probiotic lactobacillus bulgaricus in alginate’milk microspheres and evaluation of the survival in simulated gastrointestinal conditions. Journal of Food Engineering, 117(1), 99–104. https://doi.org/10.1016/j.jfoodeng.2013.02.012
Shi, T., Nishiyama, K., Nakamata, K., Aryantini, N. . P. S., Mikumo, D., Oda, Y., Yamamoto, Y., Mukai, T., Sujaya, I. N., Urashima, T., & Fukuda, K. (2012). Isolation of potential probiotic Lactobacillus rhamnosus strains from traditional fermented mare milk produced in Sumbawa Island of Indonesia. Bioscience, Biotechnology and Biochemistry, 76(10), 1897–1903. https://doi.org/10.1271/bbb.120385
Tadesse, G., Ephraim, E., & Ashenafi, M. (2005). Assessment of the antimicrobial activity of lactic acid bacteria isolated from Borde and Shamita, traditional Ethiopian fermented beverages, on some foodborne. Journal of Food Safety, 5, 13–20. http://www.foodhaccp.com/internetjournal/ijfsv5-3.pdf
Tamime, A., & Robinson, R. (2007). Yogurt, Science and Technology. Woodhead Publishing Limited, Abington Hall, Abington,.
Tamime, A. Y., Saarela, M. A. K. S., Sondergaard, A. K., Mistry, V. V., & Shah, N. P. (2005). Probiotic Dairy Products. In Probiotic Dairy Products (pp. 39–63). https://doi.org/10.1002/9780470995785
Tiwari, S. K., & Srivastava, S. (2008). Purification and characterization of plantaricin LR14: a novel bacteriocin produced by Lactobacillus plantarum LR/14. Appl Microbiol Biotechnol, 79, 759–767. https://link.springer.com/article/10.1007/s00253-008-1482-6
Tokatl, M., Gülgör, G., Ba?der Elmac, S., Arslankoz I?leyen, N., & Özçelik, F. (2015). In Vitro Properties of Potential Probiotic Indigenous Lactic Acid Bacteria Originating from Traditional Pickles. BioMed Research International, 2015, 1–8. https://doi.org/10.1155/2015/315819
ul Haq, F., Sameen, A., u Zaman, Q., Mushtaq, B. S., Hussain, M. B., Javed, A., Plygun, S., Korneeva, O., & Shariati, M. A. (2019). Development and evalutation of yogurt supplemented with lentil flour. Journal of Microbiology, Biotechnology and Food Sciences, 8(4), 1005–1009. https://doi.org/10.15414/jmbfs.2019.8.4.1005-1009
Vamadevan, V., Bertoft, E., & Seetharaman, K. (2013). On the importance of organization of glucan chains on thermal properties of starch. Carbohydrate Polymers, 92(2), 1653–1659. https://doi.org/10.1016/j.carbpol.2012.11.003
Vasile, M. A., Milea, ?tefania A., Enachi, E., Barbu, V., Cîrciumaru, A., Bahrim, G. E., Râpeanu, G., & St?nciuc, N. (2020). Functional Enhancement of Bioactives from Black Beans and Lactic Acid Bacteria into an Innovative Food Ingredient by Comicroencapsulation. Food and Bioprocess Technology, 13(6). https://doi.org/10.1007/s11947-020-02451-8
Vidhyalakshmi, R., Bhakyaraj, R., & Subhasree, R. S. (2009). Encapsulation “The Future of Probiotics”-A Review. Advances in Biological Research, 3(3–4), 96–103.
Vitiñi, E., Alvarez, S., Medina, M., Medici, M., De Budeguer, M. V., & Perdigón, G. (2000). Gut mucosal immunostimulation by lactic acid bacteria. Biocell, 24(3).
Weerathilake, W. A. D. V, Rasika, D. M. D., Ruwanmali, J. K. U., & Munasinghe, M. A. D. D. (2014). The evolution, processing, varieties and health benefits of yogurt. International Journal of Scientific and Research Publications, 4(1), 2250–3153. www.ijsrp.org
Yang, E., Fan, L., Jiang, Y., Doucette, C., & Fillmore, S. (2012). Antimicrobial activity of bacteriocin-producing lactic acid bacteria isolated from cheeses and yogurts. AMB Express, 2(1), 48. https://doi.org/10.1186/2191-0855-2-48
Zhu, F. (2019). Recent advances in modifications and applications of sago starch. Food Hydrocolloids, 96(April), 412–423. https://doi.org/10.1016/j.foodhyd.2019.05.035
Most read articles by the same author(s)
- USMAN PATO, DEWI FORTUNA AYU, EMMA RIFTYAN, FAJAR RESTUHADI, WASISSO TUNGGUL PAWENANG, ROYYAN FIRDAUS, ANNISA RAHMA, INGRID SURYANTI SURONO, IRWANDI JASWIR, Physicochemical property of oil palm leaves and utilization of cellulose microfiber as probiotic encapsulant , Biodiversitas Journal of Biological Diversity: Vol. 22 No. 7 (2021)
- EMMA RIFTYAN, YUSMARINI, EVY ROSSI, USMAN PATO, Improvement of antimicrobial activity of Pediococcus pentosaceus strain 2397 in suppressing Escherichia coli , Biodiversitas Journal of Biological Diversity: Vol. 25 No. 6 (2024)