Anticandidal and antioxidant potencies of endophytic fungi associated with Tinospora crispa

##plugins.themes.bootstrap3.article.main##

AHMAD FATHONI
SUMI HUDIYONO
https://orcid.org/0000-0002-5344-8074
ANTONIUS HERRY CAHYANA
https://orcid.org/0000-0002-2613-765X
MUHAMMAD ILYAS
ISMU PURNANINGSIH
ANDRIA AGUSTA
https://orcid.org/0000-0002-9226-6265

Abstract

Abstract. Fathoni A, Hudiyono S, Cahyana AH, Ilyas M, Purnaningsih I, Agusta A. 2023. Anticandidal and antioxidant potencies of endophytic fungi associated with Tinospora crispa. Biodiversitas 24: 2547-2555. Natural products including endophytic fungi, have opportunities for medicinal uses as anticandidal and antioxidant agents. This study aimed to investigate the anticandidal and antioxidant activities of endophytic fungi isolated from Brotowali (Tinospora crispa (L.) Miers ex Hook.fil. & Thomson) using disc diffusion, thin layer chromatography (TLC) dot-blot, and microdilution methods. Eighty extracts were screened for anticandidal activity against Candida albicans (C.P.Robin) Berkhout and antioxidants against 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radicals. Disc diffusion results showed that 38 endophytic fungi had an anticandidal activity with an inhibition zone diameter (IZD) of 7.00±00 to 18.1± 0.29 mm and 4 extracts with minimum inhibitory concentration (MIC) values of 32-64 µg/mL (strong, MIC<100). The TLC dot-blot results showed that 23 extracts had antioxidant activity and 8 extracts were very strong with an inhibitory concentration of 50% (IC50) values of 7.76±0.77 to 25.54±1.37 µg/mL, while the antioxidant activity index (AAI) values ranged from 2.01±0.10 to 6.64±0.63 (very strong, AAI>2). Results of the Pearson correlations coefficient between the total phenolic content (TPC) value and AAI value, revealed that there was a low correlation, while the correlation of IZD and MIC as anticandidal has a moderate negative (the r value 0.332, and -0.673, respectively (P<0.01). Purification of bioactive compounds is necessary, and endophytic fungi associated with T. crispa can serve as a potential source of natural antioxidants and anticandidal agents.

##plugins.themes.bootstrap3.article.details##

References
Anindyawati T, Praptiwi. 2019. A study of endophytic fungi neofusicoccum ribis from gandaria (Bouea macrophylla griffith) as enzyme inhibitor, antibacterial, and antioxidant. Appl Biol Biotechnol 7 (1): 48–53. DOI: 10.7324/JABB.2019.70109.
Atasoy N, Yücel UM. 2021. Antioxidants from Plant Sources and Free Radicals. In: Ahmad R (ed) Reactive Oxygen species. IntechOpen, London. DOI: 10.5772/intechopen.100350.
Balouiri M, Sadiki M, Ibnsouda SK. 2016. Methods for in vitro evaluating antimicrobial activity: A review. J Pharm Anal 6 (2):71–79. DOI: 10.1016/j.jpha.2015.11.005.
Chutulo EC, Chalannavar RK. 2018. Endophytic mycoflora and their bioactive compounds from azadirachta indica: A comprehensive review. J Fungi, 4 (2). DOI: 10.3390/jof4020042.
Fathoni A, Hudiyono S, Budianto E, Cahyana AH, Agusta A. 2021. Metabolite Detection and Antibacterial Activity of Fungal Endophytic Extracts Isolated from Brotowali (Tinospora crispa) Plants using TLC-Bioautography Assay. IOP Con Ser: Mater Sci Eng 1011: 12041. DOI: 10.1088/1757-899x/1011/1/012041.
Fathoni A, Ilyas M, Praptiwi, Wulansari D, Agusta A. 2022a. Antibacterial and Antioxidant Activities of Fungal Endophytes Isolated from Medicinal Plants in Simeulue Island, Aceh. HAYATI J Biosci 29 (6): 720–732. DOI: 10.4308/hjb.29.6.720-732.
Fathoni A, Hudiyono S, Budianto E, Cahyana AH, Ilyas M, Agusta A. 2022b. Evaluation of Antibacterial Activity, Total Phenolic and Flavonoid Contents of Extracts of Endophytic Fungi Associated with Tinospora crispa (L.) Hook. f. & Thomson. J Adv Sci Eng Inf Technol 12 (5): 1728–1735. DOI: 10.18517/ijaseit.12.5.14816.
Gautam VS, Singh A, Kumari P, Nishad JH, Kumar J, Yadav M, Bharti R, Prajapati P, Kharwar RN. 2022. Phenolic and flavonoid contents and antioxidant activity of an endophytic fungus Nigrospora sphaerica (EHL2), inhabiting the medicinal plant Euphorbia hirta (dudhi) L. Arch Microbiol 204 (2): 1–13. DOI: 10.1007/s00203-021-02650-7.
Ghisalberti EL. 2002. Anti-infective Agents Produced by the Hyphomycetes Genera Trichoderma and Gliocladium. Curr Med Chem Antiinfect Agents 1 (4): 343–374. DOI: 10.2174/1568012023354695.
Gouda S, Das G, Sen SK, Shin HS, Patra JK. 2016. Endophytes: A treasure house of bioactive compounds of medicinal importance. Front Microbiol 7: 1–8. DOI: 10.3389/fmicb.2016.01538.
Harper JK, Arif AM, Ford EJ., Strobel GA, Porco JA, Tomer DP, Oneill KL, Heider EM, Grant DM. 2003. Pestacin: a 1,3-dihydro isobenzofuran from Pestalotiopsis microspora possessing antioxidant and antimycotic activities. Tetrahedron 59 (14): 2471–2476. DOI: 10.1016/S0040-4020(03)00255-2.
Hiraishi A, Kamagata Y, Nakamura N. 1995. Polymerase chain reaction amplification and restriction fragment length polymorphism analysis of 16S rRNA genes from methanogens. J Ferment Bioeng 79: 523–529. DOI: 10.1016/0922-338X(95)94742-A.
https://www.restek.com [Accessed 04 October 2022].
https://www.pubchem.ncbi.nlm.nih.gov [Accessed 20 November 2022].
https:// www.blast.ncbi.nlm.nih.gov (Accessed on 15 September 2022)
Jayanthi G, Kamalraj S, Karthikeyan K, Muthumary J. 2011. Antimicrobial and antioxidant activity of the endophytic fungus Phomopsis sp. GJJM07 isolated from Mesua ferrea. Int J Curr Sci 20: 85-90.
Kaul S, Gupta S, Ahmed M, Dhar MK. 2012. Endophytic fungi from medicinal plants: A treasure hunt for bioactive metabolites. Phytochem Rev 11 (4): 487–505. DOI: 10.1007/s11101-012-9260-6.
Li S, Chen G, Zhang C, Wu M, Wu S, Liu Q. 2014. Research progress of natural antioxidants in foods for the treatment of diseases. Food Sci Hum Wellness 3 (3–4): 110–116. DOI: 10.1016/j.fshw.2014.11.002.
Napitupulu TP, Ilyas M, Kanti A, Sudiana IM. 2019. In vitro evaluation of Trichoderma harzianum strains for the control of Fusarium oxysporum f.sp. cubense. Plant Pathol Quar 9 (1):152–159.
Nath A, Joshi S. 2017. Anti-candidal effect of endophytic fungi isolated from Calotropis gigantea. Rev Biol Trop 65 (4): 1437. DOI: 10.15517/rbt.v65i4.26269.
Praptiwi, Jamal Y, Fathoni A, Nurkanto A, Agusta A. 2013. 3-Acetyl-2,5,7-Trihydroxy-1,4-Naphtalenedione, An Antimicrobial Metabolite from The Culture of Endophytic Fungus Coelomycetes TCBP4 from Tinospora crispa. Media Heal Res Dev 23 (3): 95–101. DOI: 10.22435/mpk.v23i3.3278.95-101.
Praptiwi, Raunsai M, Wulansari D, Fathoni A, Agusta A. 2018. Antibacterial and antioxidant activities of endophytic fungi extracts of medicinal plants from Central Sulawesi. J Appl Pharm Sci 8 (8): 69–74. DOI:10.7324/JAPS.2018.8811.
Rana KL, Kour D, Kaur T, Devi R, Yadav AN, Yadav N, Dhaliwal HS, Saxena AK. 2020. Endophytic microbes: biodiversity, plant growth-promoting mechanisms and potential applications for agricultural sustainability. Antonie van Leeuwenhoek 113 (8): 1075–1107. DOI: 10.1007/s10482-020-01429-y.
Rao KCS, Divakar S, Babu KN, Rao AGA, Karanth NGK, Sattur AP. 2002. Nigerloxin, a novel inhibitor of aldose reductase and lipoxygenase with Free radical scavenging activity from Aspergillus niger CFR-W-105. J Antibiot 55 (9):789–793. DOI: 10.7164/antibiotics.55.789.
Ren G, Xue P, Sun X, Zhao G. 2018. Determination of the volatile and polyphenol constituents and the antimicrobial, antioxidant, and tyrosinase inhibitory activities of the bioactive compounds from the by-product of Rosa rugosa Thunb. var. plena Regal tea. BMC Complement Altern Med 18 (1): 1-9. DOI: 10.1186/s12906-018-2374-7.
Shrestha PM, Dhillion SS. 2006. Diversity and Traditional Knowledge Concerning Wild Food Species in a Locally Managed Forest in Nepal. Agrofor Syst 66 (1): 55–63. DOI: 10.1007/s10457-005-6642-4.
Supaphon P, Preedanon S. 2019. Antimicrobial and antioxidant activities of endophytic fungi extracts isolated from Carissa carandas. Afr J Microbiol Res 13 (27): 464–473. DOI: 10.5897/ajmr2019.9164.
Suresha BS, Srinivasan K. 2013. Antioxidant properties of fungal metabolite nigerloxin in vitro. Appl Biochem Microbiol 49 (6): 587–591. DOI : 10.1134/S0003683813060173.
Wei CC, Yen PL, Chang ST, Cheng PL, Lo YC, Liao VHC. 2016. Antioxidative activities of both oleic acid and Camellia tenuifolia seed oil are regulated by the transcription factor DAF-16/FOXO in Caenorhabditis elegans. PLoS ONE 11 (6) :1–15. DOI: 10.1371/journal.pone.0157195.
Wen J, Okyere SK, Wang S, Wang J, Xie L, Ran Y, Hu Y. 2016. Endophytic Fungi: An Effective Alternative Source of Plant?Derived Bioactive Compounds for Pharmacological Studies. J Fungi 8 (2):1-45. DOI: 10.3390/jof8020205.
White TJ, Bruns TD, Lee SB, Taylor JW. 1990. Amplification and direct sequencing of fungal RNA genes for phylogenetics. In Innis MA, Gelfand DH, Sninsky JJ, White TJ, Eds. PCR protocols. Academic Press Inc, United Kingdom.
Wulansari D, Praptiwi, Julistiono H, Nurkanto A, Agusta A. 2016. Antifungal Activity of (+)-2,2’-Epicytoskyrin A and Its Membrane-Disruptive Action. Makara J Sci 20 (4): 160-166. DOI: 10.7454/mss.v20i4.6703.
Yenn TW, Lee CC, Ibrahim D, Zakaria L. 2012. Enhancement of anti-candidal activity of endophytic fungus Phomopsis sp. ED2, isolated from Orthosiphon stamineus Benth, by incorporation of host plant extract in culture medium. J Microbiol 50 (4): 581–585. DOI: 10.1007/s12275-012-2083-8.
Zida A, Bamba S, Yacouba A, Ouedraogo-Traore R, Guiguemdé RT. 2017. Anti-Candida albicans natural products, sources of new antifungal drugs: A review. J Mycol Med 27 (1): 1–19. DOI: 10.1016/j.mycmed.2016.10.002.
Zinn MK, Bockmühl D. 2020. Did granny know best? Evaluating the antibacterial, antifungal and antiviral efficacy of acetic acid for home care procedures. BMC Microbiol 20 (1): 1–9. DOI: 10.1186/s12866-020-01948-8.

Most read articles by the same author(s)