Diversity of endophytic fungi isolated from tree spinach (Cnidoscolus aconitifolius) (Euphorbiaceae) and their bioactivities

##plugins.themes.bootstrap3.article.main##

PRAPTIWI
KARTIKA DYAH PALUPI
https://orcid.org/0000-0002-5999-122X
MUHAMMAD ILYAS
LINA MARLINA
AHMAD FATHONI
https://orcid.org/0000-0002-5412-0281

Abstract

Abstract. Praptiwi, Palupi KD, Ilyas M, Marlina L, Fathoni A. 2023. Diversity of endophytic fungi isolated from tree spinach Cnidoscolus aconitifolius (Euphorbiaceae) and their bioactivities. Biodiversitas 24: 6229-6239. Endophytic fungi associated with medicinal plants have been known as a reservoir for therapeutic compounds. Cnidoscolus aconitifolius I.M. Johns (Euphorbiaceae), which possesses several local names, including papaya jepang in Indonesia, has been historically used as traditional medicine. However, research on the bioactivity of endophytic fungi associated with it has yet to be conducted. The purposes of the study were to isolate endophytic fungi from C. aconitifolius and determine their bioactivity, i.e., antibacterial activity against Escherichia coli and S. aureus and free radical scavenging activity representing antioxidant activity. Identification of endophytic fungi was carried out based on their morphological characteristics. Total phenolic and flavonoid contents were determined by the spectrophotometric method. The qualitative antibacterial and antioxidant bioactivity screening was performed using the TLC-bioautography method. The quantitative analysis of antibacterial and antioxidant activity was conducted by microdilution to obtain IC50 and MIC values. In total, 14 endophytic fungal isolates were successfully isolated. Antioxidant analysis showed that one isolate had strong antioxidant activity, and one had moderate growth inhibition activity against E. coli. The total phenolic content strongly correlates with the AAI value as an indicator of antioxidant activity. The findings of this study reveal that Phomopsis PjBg-1, an endophytic fungus from C. aconitifolius, is identified as Phomopsis sp. LH243 possesses strong antioxidant activity and moderate antibacterial activity against E. coli. Endophytic fungi from C. aconitifolius have the prospect of being an alternative to antioxidants and antibacterials. The isolation of compounds responsible for bioactivities needs to be further studied.

##plugins.themes.bootstrap3.article.details##

References
Afsar T, Razak S, Shabbir M, Khan MR. 2018. Antioxidant activity of polyphenolic compounds isolated from ethyl-acetate fraction of Acacia hydaspica. Chem Cent J 12: 15. DOI: 10. 1186/s13065-018-0373-x.
Akachukwu, D, Okafor, PN and Ibegbulem, CO. 2014. .Phytochemical content of Cnidoscolus aconitifolius leaves and toxicological effect of its aqueous leaf extract in Wistar rats. American Journal of Physiology, Biochemistry and Pharmacology, 3(1), 26-31.
Bautista-Robles V, Guerrero-Reyes G, Sánchez-Torres GI, de Jesús Parada-Luna F, Barrios-Gutiérrez JJ, Vázquez-Cerero D, G Martínez-Sala, JI Siliceo-Murrieta, RAM González-Villoria, H Keita. 2020. Cnidoscolus aconitifolius: therapeutic use and phytochemical properties. Literature review. Rev. Fac. Med. 68(3): 446-52.
Chapla VM, Ximenes VF, Zanardi LM, Lopes MN, Cavalheiro AJ, Silva DHS, Young MCM, da Fonseca LM, Bolzani VS, and Araújo AR. 2014. Bioactive Secondary Metabolites from Phomopsis sp., an Endophytic Fungus from Senna spectabilis. Molecules. 19(5): 6597–6608. doi: 10.3390/molecules19056597
Choma, I.; Grzelak, EM. 2011. Bioautography detection in thin-layer chromatography. J. Chromatogr. 1218, 2684–2691.
Choma IM and Jesionek W. 2015. TLC-Direct Bioautography as a High Throughput Method for Detection of Antimicrobials in Plants Chromatography 2: 225-238; doi:10.3390/chromatography2020225
Erb M and Kliebenstein DJ. 2020. Plant Secondary Metabolites as Defenses, Regulators, and Primary Metabolites: The Blurred Functional Trichotomy Plant Physiol. 184(1): 39–52. doi: 10.1104/pp.20.00433
Estrada C, Wcislo WT, Van Bael SA. 2013. Symbiotic fungi alter plant chemistry that discourages leaf-cutting ants. New Phytol. 198: 241–51.
Górniak I., Bartoszewski R., Króliczewski J. 2019. Comprehensive review of antimicrobial activities of plant flavonoids. Phytochem. Rev. 18:241–272. doi: 10.1007/s11101-018-9591-z.
Grzelak, E.M.; Majer-Dziedzic, B.; Choma, I.M. 2013. Development of a novel direct bioautography thin-layer chromatography test: optimization of growth conditions for gram-positive bacteria, Bacillus subtilis. J. AOAC Int. 96: 386–391
Hamid AA, Oguntoye SO, Negi AS, Ajao A, Owolabi NO. 2016. Chemical constituents, antibacterial, antifungal and Antioxidant activities of the aerial parts of Cnidoscolus aconitifolius. Ife J Sci. 18(2):561-71.
Ismail J, Runtuwene MRJ, Fatimah F. 2012. Penentuan total fenolik dan uji aktivitas antioksidan pada biji dan kulit buah Pinang Yaki (Areca vestiaria Giseke). Jurnal Ilmiah Sains 12 (2): 84-88. DOI: 10.35799/jis.12.2.2012.557. [Indonesian]
Kanti A, Ilyas M, Nurkanto A, Sulistiyani TR, Meliah S. 2018. Panduan Pengelolaan Koleksi Mikroorganisme InaCC. LIPI-Press, Jakarta.
Kobayashi T. 1970. Taxonomic Studies of Japanese Diaphorthaceae with Special Reference to Their Life-Histories. Hokkaido University, Japan.
Jeong K.-W., Lee J.-Y., Kang D.-I., Lee J.-U., Shin S.Y., Kim Y. 2009. Screening of flavonoids as candidate antibiotics against Enterococcus faecalis. J. Nat. Prod. 72:719–724. doi: 10.1021/np800698d.
Lee J.-H., Regmi S.C., Kim J.-A., Cho M.H., Yun H., Lee C.-S., Lee J.2011. Apple flavonoid phloretin inhibits Escherichia coli O157: H7 biofilm formation and ameliorates colon inflammation in rats. Infect. Immun. 79:4819–4827. doi: 10.1128/IAI.05580-11.
Miklasi ´nska-Majdanik Maria, Ma?gorzata K ?epa, Robert D. Wojtyczka , Danuta Idzik and Tomasz J. Wasik. 2018. Review Phenolic Compounds Diminish Antibiotic Resistance of Staphylococcus Aureus Clinical Strains Int J Environ Res Public Health. 15(10): 2321. doi: 10.3390/ijerph15102321
Nithya K and Muthumary J. 2011. Bioactive metabolite produced by Phomopsis sp., an endophytic fungus in Allamanda cathartica Linn. Recent Research in Science and Technology 2011, 3(3): 44-48 ISSN: 2076-5061 www.recent-science.co
Ogbu HI, Igboanusi EC. 2019. Bacterial isolates from surgical wound infection and their susceptibility reaction to Cnidoscolus aconitifolius leaf extract and honey. Journal of Medicinal Plants Studies. 7(2): 163-170.
Olszowy M. 2019. Review What is responsible for antioxidant properties of polyphenolic compounds from plants? Plant Physiology and Biochemistry 144: 135-143
Panghal A., Shaji A.O., Sajitharan D., Nain K., Garg M.K., Chhikara C. 2021. Cnidoscolus aconitifolius: Nutritional, phytochemical composition and health benefits – A review. Bioactive Compounds in Health and Disease 4(11): 260-286. DOI: https://www.doi.org/10.31989/bchd.v4i11.865
Platzer M, Kiese S, Tybussek T, Herfellner T, Schneider F, Schweiggert-Weisz U and Eisner P. 2022. Radical Scavenging Mechanisms of Phenolic Compounds: A Quantitative Structure-Property Relationship (QSPR) Study. Front. Nutr. 9:882458. doi: 10.3389/fnut.2022.882458
Praptiwi, Fathoni, A., Ilyas, M. 2020. Diversity of endophytic fungi from Vernonia amygdalina, their phenolic and flavonoid contents and bioactivities. Biodiversitas, 21, 436-441. https://doi.org/10.13057/biodiv/d210202
Praptiwi,, Windradri FI, Sulistiarini D, Ersaliany NPQ. 2022. Potential bioactivity evaluation of Arytera littoralis Blume (Sapindaceae). Biodiversitas 23(10): 4977-4983 DOI: 10.13057/biodiv/d231003
Rai N, Keshri PK, Gupta P, Verma A, Kamble SC, Singh SK, et al. 2022. Bioprospecting of fungal endophytes from Oroxylum indicum (L.) Kurz with antioxidant and cytotoxic activity. PLoSONE 17(3): e0264673. https://doi.org/10.1371/journal.pone.0264673
Rai N, Keshri PK, Verma A, Kamble SC , Mishra P, Suvakanta Barik , Santosh Kumar Singh.. and Vibhav Gautam. 2021. Plant associated fungal endophytes as a source of natural bioactive compounds. Mycology 12 (3): 139–159 https://doi.org/10.1080/21501203.2020.1870579
Santra HK, Banerjee D.2 2022. Bioactivity study and metabolic profiling of Colletotrichum alatae LCS1, an endophyte of club moss Lycopodium clavatum L.. PLoS ONE 17(4): e0267302. https://doi.org/10.1371/journal. pone.0267302
Singh DK, Sharma VK, Kumar J, Mishra A, Verma SK, Sieber TN, Kharwa RN. 2017. Diversity of endophytic mycobiota of tropical tree Tectona grandis Linn.f.: Spatiotemporal and tissue type effects. Sci Rep. 7: 3745.
Sugden R, Kelly R, Davies S. 2016. Combatting antimicrobial resistance globally. Nature Microbiology. 1(10):1–2. doi: 10.1038/nmicrobiol.2016.187.
Song HC, Qin D, Han MJ, Wang L, Zhang K, Dong JY. Bioactive 2-pyrone metabolites from an endophytic Phomopsis asparagi SWUKJ5.2020 of Kadsura angustifolia. Phytochem Lett. 2017;22:235–40.
Vikram A., Jayaprakasha G.K., Jesudhasan P.R., Pillai S.D., Patil B.S. Suppression of bacterial cell-cell signalling, biofilm formation and type III secretion system by citrus flavonoids. J. Appl. Microbiol. 2010;109:515–527. doi: 10.1111/j.1365-2672.2010.04677.x.
Zeb A. 2020. Review: Concept, mechanism, and applications of phenolic antioxidants in foods. J Food Biochem 44(9):e13394. doi: 10.1111/jfbc.13394.
Zou Y, Lu Y and Wei D. 2004. Antioxidant activity of flavonoid-rich extract of Hypericum perforatum L in vitro. J Agric Food Chem 52 (16): 5032-2039. DOI: 10.1021/jf049571r.

Most read articles by the same author(s)

1 2 > >>