Abundance and distribution of microplastics in seawater, sediment, and macroalgae sea grapes Caulerpa racemosa from Semak Daun Island, Jakarta Bay, Indonesia

##plugins.themes.bootstrap3.article.main##

MUFTI PETALA PATRIA
NOER KHOLIS
DIAN ANGGREINI
FAEIZA BUYONG

Abstract

Abstract. Patria MP, Kholis N, Anggreini D, Buyong F. 2023. Abundance and distribution of microplastics in seawater, sediment, and macroalgae sea grapes Caulerpa racemosa from Semak Daun Island, Jakarta Bay, Indonesia. Biodiversitas 24: 3424-3430. Microplastic pollution in marine ecosystems poses a significant global concern, specifically regarding the security of food derived from the sea. Macroalgae, as a food source from the sea, can be susceptible to contamination by microplastics. This research assessed the abundance and forms of microplastics in macroalgae sea grapes (Caulerpa racemosa (Forssk.) J.Agardh) collected from Semak Daun Island within the Seribu Island National Park. Additionally, the impact of washing and stirring on microplastic abundance was examined in macroalgae. The average number of microplastics and their identification showed that the washed, stirred, and NaOH-treated macroalgae samples contained an average abundance of 3.28±0.31 particles/g, 5.06±0.59 particles/g, and 2.0±0.81 particles/g, respectively. Furthermore, microplastics were detected in seawater and sediment samples, with an average abundance of 8.2±2.19 particles/L and 15,200±4,932 particles/Kg, respectively. Fragmented microplastics were the predominant form in macroalgae, while fibrous microplastics dominated seawater and sediment samples. Significant differences were observed between the washed and stirred samples (p = 0.009), where the stirred sample exhibited a higher reduction percentage. Microplastics in edible macroalgae indicated the potential hazards of exposure and subsequent accumulation in the human body.

##plugins.themes.bootstrap3.article.details##

References
Aiguo, Z., Di, S., Chong, W., Yuliang, C., Shaolin, X., Peiqin, L., Guohuan, X., Huijuan, T., Jixing, Z., 2022. Characteristics and differences of microplastics ingestion for farmed fish with different water depths, feeding habits and diets. J Environ Chem Eng 10. https://doi.org/10.1016/j.jece.2022.107189
Andrady, A.L., 2011. Microplastics in the marine environment. Mar Pollut Bull. https://doi.org/10.1016/j.marpolbul.2011.05.030
Barnes, D.K.A., Galgani, F., Thompson, R.C., Barlaz, M., 2009. Accumulation and fragmentation of plastic debris in global environments. Philosophical Transactions of the Royal Society B: Biological Sciences 364, 1985–1998. https://doi.org/10.1098/rstb.2008.0205
Bonanno, G., Orlando-Bonaca, M., 2020. Marine plastics: What risks and policies exist for seagrass ecosystems in the Plasticene? Mar Pollut Bull 158. https://doi.org/10.1016/j.marpolbul.2020.111425
Carrasco, A., Pulgar, J., Quintanilla-Ahumada, D., Perez-Venegas, D., Quijón, P.A., Duarte, C., 2019. The influence of microplastics pollution on the feeding behavior of a prominent sandy beach amphipod, Orchestoidea tuberculata (Nicolet, 1849). Mar Pollut Bull 145, 23–27. https://doi.org/10.1016/j.marpolbul.2019.05.018
Chia, W.Y., Ying Tang, D.Y., Khoo, K.S., Kay Lup, A.N., Chew, K.W., 2020. Nature’s fight against plastic pollution: Algae for plastic biodegradation and bioplastics production. Environmental Science and Ecotechnology. https://doi.org/10.1016/j.ese.2020.100065
Cozzolino, L., Nicastro, K.R., Zardi, G.I., de los Santos, C.B., 2020. Species-specific plastic accumulation in the sediment and canopy of coastal vegetated habitats. Science of the Total Environment 723. https://doi.org/10.1016/j.scitotenv.2020.138018
de Smit, J.C., Anton, A., Martin, C., Rossbach, S., Bouma, T.J., Duarte, C.M., 2021. Habitat-forming species trap microplastics into coastal sediment sinks. Science of the Total Environment 772. https://doi.org/10.1016/j.scitotenv.2021.145520
Eriksen, M., Lebreton, L.C.M., Carson, H.S., Thiel, M., Moore, C.J., Borerro, J.C., Galgani, F., Ryan, P.G., Reisser, J., 2014. Plastic Pollution in the World’s Oceans: More than 5 Trillion Plastic Pieces Weighing over 250,000 Tons Afloat at Sea. PLoS One 9. https://doi.org/10.1371/journal.pone.0111913
Esiukova, E.E., Lobchuk, O.I., Volodina, A.A., Chubarenko, I.P., 2021. Marine macrophytes retain microplastics. Mar Pollut Bull 171. https://doi.org/10.1016/j.marpolbul.2021.112738
Feng, Z., Zhang, T., Shi, H., Gao, K., Huang, W., Xu, J., Wang, J., Wang, R., Li, J., Gao, G., 2020. Microplastics in bloom-forming macroalgae: Distribution, characteristics and impacts. J Hazard Mater 397. https://doi.org/10.1016/j.jhazmat.2020.122752
Gao, F., Li, J., Hu, J., Li, X., Sun, C., 2020. Occurrence of microplastics carried on Ulva prolifera from the Yellow Sea, China. Case Studies in Chemical and Environmental Engineering 2. https://doi.org/10.1016/j.cscee.2020.100054
Gassel, M., Harwani, S., Park, J.S., Jahn, A., 2013. Detection of nonylphenol and persistent organic pollutants in fish from the North Pacific Central Gyre. Mar Pollut Bull 73, 231–242. https://doi.org/10.1016/j.marpolbul.2013.05.014
Hamzah, S.R., Altrawneh, R.S., Anuar, S.T., Khalik, W.M.A.W.M., Kolandhasamy, P., Ibrahim, Y.S., 2021. Ingestion of microplastics by the estuarine polychaete, Namalycastis sp. in the Setiu Wetlands, Malaysia. Mar Pollut Bull 170. https://doi.org/10.1016/j.marpolbul.2021.112617
Hao, H., Fu, M., Yan, R., He, B., Li, M., Liu, Q., Cai, Y., Zhang, X., Huang, R., 2019. Chemical composition and immunostimulatory properties of green alga Caulerpa racemosa var peltata. Food Agric Immunol 30, 937–954. https://doi.org/10.1080/09540105.2019.1646216
Kanhai, L.D.K., Officer, R., Lyashevska, O., Thompson, R.C., O’Connor, I., 2017. Microplastic abundance, distribution and composition along a latitudinal gradient in the Atlantic Ocean. Mar Pollut Bull 115, 307–314. https://doi.org/10.1016/j.marpolbul.2016.12.025
Lam, T.W.L., Fok, L., Ma, A.T.H., Li, H.X., Xu, X.R., Cheung, L.T.O., Wong, M.H., 2022. Microplastic contamination in marine-cultured fish from the Pearl River Estuary, South China. Science of the Total Environment 827. https://doi.org/10.1016/j.scitotenv.2022.154281
Li, Q., Feng, Z., Zhang, T., Ma, C., Shi, H., 2020. Microplastics in the commercial seaweed nori. J Hazard Mater 388. https://doi.org/10.1016/j.jhazmat.2020.122060
Li, Q., Su, L., Ma, C., Feng, Z., Shi, H., 2022. Plastic debris in coastal macroalgae. Environ Res 205. https://doi.org/10.1016/j.envres.2021.112464
López-López, L., Preciado, I., González-Irusta, J.M., Arroyo, N.L., Muñoz, I., Punzón, A., Serrano, A., 2018. Incidental ingestion of meso- and macro-plastic debris by benthic and demersal fish. Food Webs 14, 1–4. https://doi.org/10.1016/j.fooweb.2017.12.002
López-Rosales, A., Andrade, J.M., López-Mahía, P., Muniategui-Lorenzo, S., 2022. Development of an analytical procedure to analyze microplastics in edible macroalgae using an enzymatic-oxidative digestion. Mar Pollut Bull 183. https://doi.org/10.1016/j.marpolbul.2022.114061
Mateos-Cárdenas, A., van Pelt, F.N.A.M., O’Halloran, J., Jansen, M.A.K., 2021. Adsorption, uptake and toxicity of micro- and nanoplastics: Effects on terrestrial plants and aquatic macrophytes. Environmental Pollution. https://doi.org/10.1016/j.envpol.2021.117183
Murphy, F., Russell, M., Ewins, C., Quinn, B., 2017. The uptake of macroplastic & microplastic by demersal & pelagic fish in the Northeast Atlantic around Scotland. Mar Pollut Bull 122, 353–359. https://doi.org/10.1016/j.marpolbul.2017.06.073
Nagappan, T., Vairappan, C.S., 2014. Nutritional and bioactive properties of three edible species of green algae, genus Caulerpa (Caulerpaceae). J Appl Phycol 26, 1019–1027. https://doi.org/10.1007/s10811-013-0147-8
Ng, K.L., Suk, K.F., Cheung, K.W., Shek, R.H.T., Chan, S.M.N., Tam, N.F.Y., Cheung, S.G., Fang, J.K.H., Lo, H.S., 2022. Macroalgal morphology mediates microplastic accumulation on thallus and in sediments. Science of the Total Environment 825. https://doi.org/10.1016/j.scitotenv.2022.153987
Pangestuti, R., Haq, M., Rahmadi, P., Chun, B.S., 2021. Nutritional value and biofunctionalities of two edible green seaweeds (Ulva lactuca and caulerpa racemosa) from indonesia by subcritical water hydrolysis. Mar Drugs 19. https://doi.org/10.3390/md19100578
Paul, N.A., Neveux, N., Magnusson, M., de Nys, R., 2014. Comparative production and nutritional value of “sea grapes” - the tropical green seaweeds Caulerpa lentillifera and C. racemosa. J Appl Phycol 26, 1833–1844. https://doi.org/10.1007/s10811-013-0227-9
Saley, A.M., Smart, A.C., Bezerra, M.F., Burnham, T.L.U., Capece, L.R., Lima, L.F.O., Carsh, A.C., Williams, S.L., Morgan, S.G., 2019. Microplastic accumulation and biomagnification in a coastal marine reserve situated in a sparsely populated area. Mar Pollut Bull 146, 54–59. https://doi.org/10.1016/j.marpolbul.2019.05.065
Sfriso, A.A., Tomio, Y., Juhmani, A.S., Sfriso, A., Munari, C., Mistri, M., 2021. Macrophytes: A temporary sink for microplastics in transitional water systems. Water (Switzerland) 13. https://doi.org/10.3390/w13213032
Sinurat, E., Fransiska, D., Utomo, B.S.B., Subaryono, Nurhayati, Sihono, 2022. Characteristics of Nori-Like Product Prepared from Seaweeds Growing in Indonesia. Journal of Aquatic Food Product Technology 31, 525–535. https://doi.org/10.1080/10498850.2022.2077677
Sundbæk, K.B., Koch, I.D.W., Villaro, C.G., Rasmussen, N.S., Holdt, S.L., Hartmann, N.B., 2018. Sorption of fluorescent polystyrene microplastic particles to edible seaweed Fucus vesiculosus. J Appl Phycol 30, 2923–2927. https://doi.org/10.1007/s10811-018-1472-8
Vegter, A.C., Barletta, M., Beck, C., Borrero, J., Burton, H., Campbell, M.L., Costa, M.F., Eriksen, M., Eriksson, C., Estrades, A., Gilardi, K.V.K., Hardesty, B.D., Ivar do Sul, J.A., Lavers, J.L., Lazar, B., Lebreton, L., Nichols, W.J., Ribic, C.A., Ryan, P.G., Schuyler, Q.A., Smith, S.D.A., Takada, H., Townsend, K.A., Wabnitz, C.C.C., Wilcox, C., Young, L.C., Hamann, M., 2014. Global research priorities to mitigate plastic pollution impacts on marine wildlife. Endanger Species Res 25, 225–247. https://doi.org/10.3354/esr00623
Welden, N.A., Cowie, P.R., 2017. Degradation of common polymer ropes in a sublittoral marine environment. Mar Pollut Bull 118, 248–253. https://doi.org/10.1016/j.marpolbul.2017.02.072
Zhang, C., Chen, X., Wang, J., Tan, L., 2017. Toxic effects of microplastic on marine microalgae Skeletonema costatum: Interactions between microplastic and algae. Environmental Pollution 220, 1282–1288. https://doi.org/10.1016/j.envpol.2016.11.005
Zhang, T., Wang, J., Liu, D., Sun, Z., Tang, R., Ma, X., Feng, Z., 2022. Loading of microplastics by two related macroalgae in a sea area where gold and green tides occur simultaneously. Science of the Total Environment 814. https://doi.org/10.1016/j.scitotenv.2021.152809