Predicting of Komodo dragon's potential prey habitat suitability using MaxEnt in Riung Nature Reserve, Flores, East Nusa Tenggara, Indonesia

##plugins.themes.bootstrap3.article.main##

FADLAN PRAMATANA
YUSRATUL AINI
NIXON RAMMANG
YOSEP SERAN MAU
I G.B. ADWITA ARSA
ARIEF MAHMUD

Abstract

Abstract. Pramatana F, Aini Y, Rammang N, Mau YS, Arsa IGBA, Mahmud A. 2023. Predicting of Komodo dragon's potential prey habitat suitability using MaxEnt in Riung Nature Reserve, Flores East Nusa Tenggara. Biodiversitas 24: 3128-3139. The Komodo dragon (Varanus komodoensis Ouwens, 1912) is a big lizard species from the Varanidae family that belongs to the Endangered category (EN) listed on the IUCN red list and Appendix I CITES. This study aimed to reveal the distribution of potential preys Komodo dragons in Rinca Island, Komodo National Park, Manggarai District, East Nusa Tenggara, Indonesia, using Maximum Entropy (MaxEnt), which was collected using rapid assessment methods. The presences of the Komodo dragon's potential prey come from direct and indirect observation or previous studies. We collected 510 points of Komodo dragon prey presence in Riung, Ngada District, East Nusa Tenggara, Indonesia from six species, including cattle, but only used 127 points for analysis based on the correlation. Long-tailed macaque, wild boar, civet, Timor deer, feral horses, and cows were the potential prey for komodo in Riung. Most of the points come from cattle, such as cows. On the other hand, we used environmental habitat to represent prey habitats such as elevation, slope, land surface temperature, moisture index, vegetation index, and distance from specific objects such as distance from agriculture, rivers, road, savanna, and settlement. Komodo dragon's potential prey in Riung was distributed in savanna, mangrove, and lowland forest. The result showed three suitable habitats for the Komodo dragon's potential prey dominated by low and moderate-suitability areas.

##plugins.themes.bootstrap3.article.details##

References
Ab Lah NZ, Yusop Z, Hashim M, Mohd Salim J, Numata S. 2021. Predicting the habitat suitability of Melaleuca cajuputi based on the MaxEnt Species Distribution Model. Forests 12 (11): 1449.
Ariefiandy A, Purwandana D, Coulson G, Forsyth DM, Jessop TS. 2013. Monitoring the ungulate prey of the Komodo dragon Varanus komodoensis: distance sampling or faecal counts? Wildlife Biology, 19 (2): 126–137.
Ariefiandy A, Purwandana D, Nasu SA, Benu YJ, Chrismiawati M, Kamil PI, Imansyah MJ, Ciofi C, Jessop T. 2017. Panduan Lapangan Biawak Komodo. Denpasar (ID): Yayasan Komodo Survival Program.
Baek S, Kim MJ, Lee JH. 2019. Current and future distribution of Ricania shantungensis (Hemiptera: Ricaniidae) in Korea: Application of spatial analysis to select relevant environmental variables for MaxEnt and CLIMEX modeling. Forests, 10 (6) : 490.
Baskaran N, Ramkumaran K, Karthikeyan G. 2016. Spatial and dietary overlap between blackbuck (Antilope cervicapra) and feral horse (Equus caballus) at Point Calimere Wildlife Sanctuary, Southern India: Competition between native versus introduced species. Mammalian Biology, 81: 295–302.
Bismark M. 2011. Prosedur Operasi Standar (SOP) untuk Keragaman Jenis Pada Kawasan Konservasi. Bogor: Balitbang Kehutanan.
Brown JL. 2014. SDM toolbox: a python?based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses. Methods in Ecology and Evolution, 5 (7): 694–700.
Brown JL, Bennett, JR, French CM. 2017. SDMtoolbox 2.0: the next generation Python-based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses. PeerJ, 5, e4095.
Cabrera JS, Lee HS. 2020. Flood risk assessment for Davao Oriental in the Philippines using geographic information system?based multi?criteria analysis and the maximum entropy model. Journal of Flood Risk Management, 13 (2) e12607.
Che L, Cao B, Bai C, Wang J, Zhang L. 2014. Predictive distribution and habitat suitability assessment of Notholirion bulbuliferum based on MaxEnt and ArcGIS. Chinese Journal of Ecology, 33 (6): 1623.
Ciofi C, De Boer ME. 2004. Distribution and conservation of the Komodo monitor (Varanus komodoensis). Herpetological Journal, 14 (2): 99–107.
Çoban HO, Örücü ÖK, Arslan ES. 2020. MaxEnt modeling for predicting the current and future potential geographical distribution of Quercus libani Olivier. Sustainability, 12 (7): 2671.
Deniau C, Gaillard T, Mbagogo A, Réounodji F, Le Bel S. 2017. Using the KoBoCollect tool to analyze the socio-economic and socio-cultural aspects of commercial hunting and consumption of migratory waterbirds in the Lakes Chad and Fitri (Chad).
Fielding AH, Bell JF. 1997. A review of methods for the assessment of prediction errors in conservation presence/absence models. Environmental Conservation, 24 (1): 38–49.
Guisan A, Zimmermann NE. 2000. Predictive habitat distribution models in ecology. Ecological Modelling, 135 (2–3): 147–186.
Jessop TS, Madsen T, Ciofi C, Imansyah MJ, Purwandana D, Rudiharto H, Arifiandy A, Phillips JA. 2007. Island differences in population size structure and catch per unit effort and their conservation implications for Komodo dragons. Biological Conservation, 135 (2): 247–255.
Jessop TS, Purwandana D, Ciofi C, Jeri Imansyah M, Panggur MR, Ariefiandy A. 2018. Effects of human activities on Komodo dragons in Komodo National Park. Biodiversity and Conservation, 27 (13): 3329–3347.
Jessop T, Ariefiandy A, Azmi M, Ciofi C, Imansyah J, Purwandana D. 2021. Varanus komodoensis. The IUCN Red List of Threatened Species 2021: e.T22884A123633058. https://dx.doi.org/10.2305/IUCN.UK.2021-2.RLTS.T22884A123633058.en. Accessed on 12 May 2023.
Kayat, Pudyatmoko S, Maksum M, Imron, MA. 2017. Potensi Konflik Penggembalaan Kuda pada Habitat Rusa Timor (Rusa timorensis Blainville 1822) di Kawasan Tanjung Torong Padang, Nusa Tenggara Timur. Jurnal Ilmu Kehutanan, 11 (1): 4–18.
Khadka KK, James DA. 2016. Habitat selection by endangered Himalayan musk deer (Moschus chrysogaster) and impacts of livestock grazing in Nepal Himalaya: Implications for conservation. Journal for Nature Conservation, 31:38–42.
Khanum R, Mumtaz AS, Kumar S. 2013. Predicting impacts of climate change on medicinal asclepiads of Pakistan using Maxent modeling. Acta Oecologica, 49: 23–31.
Kornejady A, Ownegh M, Bahremand A. 2017. Landslide susceptibility assessment using maximum entropy model with two different data sampling methods. Catena, 152: 144–162.
Lakshminarasimhappa MC. 2022. Web-based and smart mobile app for data collection: Kobo Toolbox/Kobo collect. Journal of Indian Library Association, 57 (2): 72–79.
Le Bel S, Chavernac D, Stansfield F. 2016. Promoting a mobile data collection system to improve HWC incident recording: a simple and handy solution for controlling problem animals in southern Africa. Problematic Wildlife: A Cross-Disciplinary Approach, 395–411.
Li S, Wang Z, Zhu Z, Tao Y, Xiang J. 2023. Predicting the potential suitable distribution area of Emeia pseudosauteri in Zhejiang Province based on the MaxEnt model. Scientific Reports, 13 (1): 1806.
Li Y, Ding C. 2016. Effects of sample size, sample accuracy and environmental variables on predictive performance of MaxEnt model. Polish Journal of Ecology, 64 (3): 303–312.
Lobo JM, Jiménez?Valverde A, Real R. 2008. AUC: a misleading measure of the performance of predictive distribution models. Global Ecology and Biogeography, 17 (2): 145–151.
Ma B, Sun J. 2018. Predicting the distribution of Stipa purpurea across the Tibetan Plateau via the MaxEnt model. BMC Ecology, 18: 1–12.
McCarthy JL, Wibisono HT, McCarthy KP, Fuller TK, Andayani N. 2015. Assessing the distribution and habitat use of four felid species in Bukit Barisan Selatan National Park, Sumatra, Indonesia. Global Ecology and Conservation, 3:210–221.
Merow C, Smith MJ, Silander Jr JA. 2013. A practical guide to MaxEnt for modeling species’ distributions: what it does, and why inputs and settings matter. Ecography, 36 (10): 1058–1069.
Mustari AH, Djuanda TD, Sihite J. 2011. Potensi Mamalia Besar Sebagai Mangsa Komodo (Varanus Komodoensis Ouwens 1912) Di Pulau Rinca Taman Nasional Komodo Nusa Tenggara Timur. Media Konservasi, 16 (1).
Na X, Zhou H, Zang S, Wu C, Li W, Li M. 2018. Maximum Entropy modeling for habitat suitability assessment of Red-crowned crane. Ecological Indicators, 91: 439–446.
Nezer O, Bar-David S, Gueta T, Carmel Y. 2017. High-resolution species-distribution model based on systematic sampling and indirect observations. Biodiversity and Conservation, 26: 421–437.
Oxoli D, Prestifilippo G, Bertocchi D. 2017. Enabling spatial autocorrelation mapping in QGIS: The hotspot analysis Plugin. GEAM. Geoingegneria Ambientale E Mineraria, 151 (2): 45–50.
Palla F, Le Bel S, Chavernac D, Cornélis D. 2016. New technologies: mobile data collection system implication for wildlife management in Central Africa.
Perkins-Taylor IE, Frey JK. 2020. Predicting the distribution of a rare chipmunk (Neotamias quadrivittatus oscuraensis): comparing MaxEnt and occupancy models. Journal of Mammalogy, 101 (4): 1035–1048.
Phillips SJ. 2005. A brief tutorial on Maxent. AT&T Research, 190 (4): 231–259.
Phillips SJ. 2017. A brief tutorial on Maxent. In AT&T Research.
Phillips SJ, Anderson RP, Dudík M, Schapire RE, Blair ME. 2017. Opening the black box: An open?source release of Maxent. Ecography, 40 (7): 887–893.
Phillips SJ, Anderson RP, Schapire RE. 2006. Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190 (3–4): 231–259.
Phillips SJ, Dudík M. 2008. Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography, 31 (2): 161–175.
Purwandana D, Ariefiandy A, Imansyah MJ, Rudiharto H, Seno A, Ciofi C, Fordham DA, Jessop TS. 2014. Demographic status of Komodo dragons populations in Komodo National Park. Biological Conservation, 171: 29–35.
Purwandana D, Ariefiandy A, Imansyah MJ, Seno A, Ciofi C, Letnic M, Jessop TS. 2016. Ecological allometries and niche use dynamics across Komodo dragon ontogeny. The Science of Nature, 103: 1–11.
Purwandana D, Ciofi C, Imansyah MJ, Ariefiandy A, Rudiharto H, Jessop TS. 2021. Prey preferences and body mass most influence movement behavior and home range area of Komodo Dragons. Ichthyology & Herpetology, 109 (1): 92–101.
Rahmati O, Pourghasemi HR, Melesse AM. 2016. Application of GIS-based data driven random forest and maximum entropy models for groundwater potential mapping: a case study at Mehran Region, Iran. Catena, 137: 360–372.
Remya K, Ramachandran A, Jayakumar S. 2015. Predicting the current and future suitable habitat distribution of Myristica dactyloides Gaertn. using MaxEnt model in the Eastern Ghats, India. Ecological Engineering, 82: 184–188.
Santosa Y, Muhammad RYZ, Rahman DA. 2012. Pendugaan parameter demografi dan bentuk sebaran spasial biawak komodo di pulau rinca, taman nasional komodo. Jurnal Ilmu Pertanian Indonesia, 17 (2): 126–131.
Sharma S, Arunachalam K, Bhavsar D, Kala R. 2018. Modeling habitat suitability of Perilla frutescens with MaxEnt in Uttarakhand—A conservation approach. Journal of Applied Research on Medicinal and Aromatic Plants, 10: 99–105.
Shrestha N. 2020. Detecting multicollinearity in regression analysis. American Journal of Applied Mathematics and Statistics, 8 (2): 39–42.
Sims DW, Humphries NE, Bradford, RW, Bruce, BD. 2012. Lévy flight and Brownian search patterns of a free?ranging predator reflect different prey field characteristics. Journal of Animal Ecology, 81 (2): 432–442.
Sims DW, Righton D, Pitchford JW. 2007. Minimizing errors in identifying Lévy flight behaviour of organisms. Journal of Animal Ecology, 76 (2): 222–229.
Songchitruksa P, Zeng X. 2010. Getis–Ord spatial statistics to identify hot spots by using incident management data. Transportation Research Record, 2165 (1): 42–51.
Su H, Bista M, Li M. 2021. Mapping habitat suitability for Asiatic black bear and red panda in Makalu Barun National Park of Nepal from Maxent and GARP models. Scientific Reports, 11 (1): 1–14.
Sun X, Long Z, Jia J. 2021. A multi-scale Maxent approach to model habitat suitability for the giant pandas in the Qionglai mountain, China. Global Ecology and Conservation, 30, e01766.
Swets JA. 1988. Measuring the accuracy of diagnostic systems. Science, 240 (4857): 1285–1293.
Yang XQ, Kushwaha SPS, Saran S, Xu J, Roy PS. 2013. Maxent modeling for predicting the potential distribution of medicinal plant, Justicia adhatoda L. in Lesser Himalayan foothills. Ecological Engineering, 51: 83–87.
Yu W, Ai T, Yang M, Liu J. 2016. Detecting “Hot Spots” of facility POIs based on kernel density estimation and spatial autocorrelation technique. ??????? ?????, 41 (2):221–227.
Zhang D, Sun C, Yu H, Li J, Liu W, Li Z, Bao C, Liu D, Zhang N, Zhu F. 2019. Environmental risk factors and geographic distribution of severe fever with thrombocytopenia syndrome in Jiangsu Province, China. Vector-Borne and Zoonotic Diseases, 19 (10): 758–766.
Zhang J, Jiang F, Li G, Qin W, Li S, Gao H, Cai Z, Lin G, Zhang T. 2019. Maxent modeling for predicting the spatial distribution of three raptors in the Sanjiangyuan National Park, China. Ecology and Evolution, 9 (11): 6643–6654.

Most read articles by the same author(s)