Identification of Arbuscular Mycorrhizal Fungi associated with Arabica coffee root (Coffea arabica) in the Arfak Mountains region of West Papua, Indonesia

##plugins.themes.bootstrap3.article.main##

ANTONIUS SUPARNO
SARASWATI PRABAWARDANI
DENTYN K. NISA
REIMAS R. RUIMASSA

Abstract

Abstract. Suparno A, Prabawardani S, Nisa DK, Ruimassa RR. 2023. Identification of Arbuscular Mycorrhizal Fungi associated with Arabica coffee root (Coffea arabica) in the Arfak Mountains region of West Papua, Indonesia. Biodiversitas 24: 3207-3213. Coffee is a global commodity widely consumed as a beverage globally and has a high economy. Currently, the trend of drinking coffee is no longer dominated by older people but has become part of the millennial and celebrity lifestyle; therefore, worldwide demand for coffee continues to increase. Efforts to develop area expansion and productivity continue to be pursued. The Arfak Mountains Region of West Papua, located 800 - 2,500 m above sea level (masl), is a potential area for coffee plantations. The local farmers in this area have grown coffee independently and with gradual government support for the last years. Given the benefits of Arbuscular Mycorrhizal Fungi (AMF), which can increase plant growth and productivity, this study aims to identify the types of AMF that are associated with coffee plants in 4 districts, Mokwam, Anggi Giji, Anggi Gida, and Membey in Arfak Mountains region, West Papua. Identification of AMF types was observed based on the morphology of mycorrhizal spores. The research was conducted using the observation method with a purposive sampling technique from November 2022 to March 2023. Based on the observation, the coffee plants in 4 districts were associated with AMF. The types of AMF associated with coffee in Mokwam were more numerous than in other locations, namely the Acaulosporaceae Genus with five species, Glomeaceae Genus with five species, one species of Simiglomus sensu stricto, one species of Funneliformis sensu stricto, and one species of Septoglomus sensu stricto. AMF in Anggi Giji District consisted of Acaulosporaceae Genus with two species, Glomeaceae Genus with four species, while in Anggi Gida District consisted of Acaulosporaceae Genus with one species, Glomeaceae Genus with three species, one species Septoglomus sensu stricto. AMF species in the coffee plants of the Membey District are the Acaulosporaceae Genus with three species, the Glomeaceae Genus with two species, and one species of Septoglomus sensu stricto. From the soil analysis results, the soil fertility level is low; conversely, the mycorrhizal presence level is higher because of the more infertile soil, the more active mycorrhiza.

##plugins.themes.bootstrap3.article.details##

References
Aguila SRD, la SotaRicaldi AMD, Guivin MAC, García ÁL. 2022. Phylogenetic diversity of arbuscular mycorrhizal fungal communities increases with crop age in Coffea arabica Plantations. J. Soil Science and Plant Nutrition 22: 3291–3303. https://doi.org/10.1007/s42729-022-00887-9
Al-Areqi AHNA, Chliyeh M, Sghir F, Touhami AO, Benkirane R, Douira A. 2013. Diversity of arbuscular mycorrhizal fungi in the rhizosphere of Coffea arabica in the Republic of Yemen. Journal of Applied Biosciences 64: 4888 – 4901. DOI: 10.4314/jab.v64i1.88478
Alkobaisy JS. 2022. Factors affecting mycorrhizal activity. IntechOpen. DOI: http://dx.doi.org/10.5772/intechopen.108099
Auli NR, Kasiamdari RS. 2019. Produksi inokulum vesikular arbuskular mikoriza pada inang Sorghum bicolor (L.) Moench dengan variasi jenis inokulum dan pupuk NPK. J. Riset Biologi dan Aplikasinya 1(2): 80- 86. https://doi.org/10.26740/jrba.v1n2.p80-86. [Indonesian]
Banstola P, Shrestha KK, Thapa I, Mishra AK. 2021. Environmental impacts of concrete in chemical parameters of soil. J. Adv Res Civil Envi Engr 8(3-4): 9–17. https://doi.org/10.24321/2393.8307. 202106
Barceló M, Van Bodegom PM, Tedersoo L, Haan N, Veen GF, Ostonen I, Trimbos K, Soudzilovskaia NA. 2020. The abundance of arbuscular mycorrhiza in soils is linked to the total length of roots colonized at ecosystem level. PLoS ONE 15: e0237256. https://doi.org/10.1371/journal.pone.0237256
Becerra A, Bartoloni N, CofreN, SoterasF, Cabello M. 2014. Arbuscular mycorrhizal fungi in saline soils: Vertical distribution at different soil depth. Braz J Microbiol 45(2): 585-594. DOI: 10.1590/s1517-83822014000200029
Bell CA, Magkourilou E, Barker H, Barker A, Urwin PE, Field KJ. 2023. Arbuscular mycorrhizal fungal-induced tolerance is determined by fungal identity and pathogen density. Plants, People, Planet 5(2): 241–253. https://doi.org/10.1002/ppp3.10338
BPS. 2020. Indonesian Coffee Statistics. Statistical Centre Board, Jakarta, Indonesia. [Indonesian]
Bunn R., Lekberg Y, Zabinski C. 2009. Arbuscular mycorrhizal fungi ameliorate temperature stress in thermophilic plants. Ecology 90 (5): 1378–1388. doi: 10.1890/07-2080.1
Chagnon PL, Bradley RL, Lafond J, Maxime PC, Penaud V. 2022. Trait-based and phylogenetic filtering of arbuscular mycorrhizal fungal communities under long-term agricultural practices. Plant and Soil 471: 273–287. https://doi.org/10.1007/s11104-021-05155-w
Cogo FD, Guimaraes PTG, Rojas EP, Saggin OJ, Siqueira JO, Carneiro MAC. 2017. Arbuscular mycorrhiza in Coffea arabica L.: Review and meta-analysis. Coffee Science 12(3): 419–443. https://doi.org/10.25186/cs.v12i3.1227
Cruz-Paredes C, Diera T, Davey M, Rieckmann MM, Christensen P, Dela Cruz M, Laursen KH, Joner EJ, Christensen JH, Nybroe O, Jakobsen I. 2021. Disentangling the abiotic and biotic components of AMF suppressive soils. Soil Biol. Biochemistry 159: 108305. https://doi.org/10.1016/j.soilbio.2021.108305
De Beenhouwer M, Van Geel M, Ceulemans T, Muleta D, Lievens B, Honnay O. 2015. Changing soil characteristics alter the arbuscular mycorrhizal fungi communities of Arabica coffee (Coffea arabica) in Ethiopia across a management intensity gradient. Soil Biology and Biochemistry 91: 133–139. https://doi.org/10.1016/j.soilbio.2015. 08.037
Deguchi S, Yosuke M, Chisato T, Yuki S, Hajime O, Yoshimune O. 2017. Proposal of a new estimation method of colonization rate of arbuscular mycorrhizal fungi in the roots of Chengiopanax sciadophylloides. Mycobiology 45(1): 15=19. https://doi.org/10.5941/MYCO.2017.45.1.15
de la Hoz JP. Rivero J, Azcón-Aguilar C, Urrestarazu M, Pozo MJ. 2021. Mycorrhiza-induced resistance against foliar pathogens is uncoupled of nutritional effects under different light intensities. Journal of Fungi 7: 402. https://doi.org/10.3390/jof7060402
Delvian, Rambey R. 2019. Effect of salinity on spore germination, hyphal length and root colonization of the arbuscular mycorrhizal fungi. IOP Conf Ser Earth Environ Sci 260: 012124. DOI: 10.1088/1755-1315/260/1/012124
Gosling P, Hodge A, Goodlass G, Bending GD. 2006. Arbuscular mycorrhizal fungi and organic farming. Agriculture Ecosystem & Environment 113 (1-4): 17–35. https://doi.org/10.1016/j.agee.2005.09.009
Husein M, Umami N, Pertiwiningrum A. 2021. Pengaruh inokulasi fungi mikoriza arbuskula indigenous Bambusa sp, Cichorium intybus L., Pinus merkusii terhadap pertumbuhan, produktivitas dan kandungan nutrien hijauan Cichorium intybus L. Master thesis, Universitas Gadjah Mada [Indonesian]
ICO. 2021. Coffee Market Report July 2021. London: International Coffee Organization pp. 1–11.
Janowski D, Leski T. 2022. Factors in the distribution of mycorrhizal and soil fungi. Diversity 14 (12): 1122. https://doi.org/10.3390/d14121122
Junior PP, Moreira BC, da Silva Md CS, Veloso TGR, Stürmer SL, Fernandes RBA. 2019. Agroecological coffee management increases arbuscular mycorrhizal fungi diversity. PLoS ONE 14(1): e0209093. https://doi.org/10.1371/journal.pone.0209093
Khaliq A, Perveen S, Alamer KH, Zia Ul Haq M, Rafique Z, Alsudays IM, Althobaiti AT, Saleh MA, Hussain S, Attia H. 2022. Arbuscular mycorrhizal fungi symbiosis to enhance plant–soil interaction. Sustainability 14 (13): 7840. https://doi.org/ 10.3390/su14137840
Kiheri H, Jussi H, Sari T. 2016. Staining and microscopy of mycorrhizal fungal colonization in preserved ericoid plant roots. Journal of Berry Research 7 (4): 231–237. https://doi.org/10.3233/JBR-170160
Koske RE, Gemma JN. 1989. A modified procedure for staining roots to detect VA mycorrhizas. Mycological Research 92 (4): 486-488. http://dx.doi.org/10.1016/S0953-7562(89)80195-9
Krishnan S. 2017. Sustainable coffee production. Oxford research encyclopedia of environmental science. https://oxfordre.com/envir onmentalscience/view/ https://doi.org/10.1093/acrefore/9780199389414.001.0001/ acrefore-9780199389414-e-224 (accessed 07.05.23).
Liu CY, Zhang DJ, Ying-Ning Z, Kuca K, Wu QS. 2018. Mycorrhiza-induced change in root hair growth is associated with IAA accumulation and expression of EXPs in trifoliate orange under two P levels. Scientia Horticulturae 234: 227-235 DOI: 10.1016/j.scienta.2018.02.052
Liu M, Shen Y, Li Q, Xiao W, Song X. 2021. Arbuscular mycorrhizal fungal colonization and soil pH induced by nitrogen and phosphorus additions affects leaf C:N:P stoichiometry in Chinese fir (Cunninghamia lanceolata) forests. Plant and Soil 461(1-2): 421–440. https://doi.org/10.1007/s11104-021-04831-1
Liu RC, Zou YN, Ku?a K, Hashem A, Abd_Allah EF, Wu QS. 2021. Exogenous glomalin-related soil proteins differentially regulate soil properties in trifoliate orange. Agronomy 11(10): 1896. https:// doi.org/10.3390/agronomy11101896
Mbodj D, Effa-Effa B, Kane A, Manneh B, Gantet P, Laplaze L, Diedhiou A.G, Grondin A. 2018. Arbuscular mycorrhizal symbiosis in rice: Establishment, environmental control and impact on plant growth and resistance to abiotic stresses. Rhizosphere 8: 12–26.
Melo, C.D., C. Walker, C. Krüger, P.A.V. Borges, S. Luna, D. Mendonça, A.C. Machado. 2019. Environmental factors driving arbuscular mycorrhizal fungal communities associated with endemic woody plant Picconia azorica on native forest of Azores. Annals of Microbiology 69:1309–1327. https://doi.org/10.1007/s13213-019-01535-x
Meng LL, Liang SM, Srivastava AK, Li Y, Liu, CY, Zou YN, Ku?a K, Hashem A, Abd_Allah EF, Wu QS. 2021. Easily extractable glomalin-related soil protein as foliar spray improves nutritional qualities of late ripening sweet oranges. Horticulturae 7(8): 228. https://doi.org/10.3390/ horticulturae7080228
Mo AS, Qiu ZQ, He Q, Wu HY, Zhou ZB. 2016. Efect of continuous monocropping of tomato on soil microorganism and microbial biomass carbon. Communications in Soil Science and Plant Analysis 47(9): 1069–1077. https://doi.org/10.1080/00103624.2016.1165832
Neffar S, Beddiar A, Chenchouni H. 2015. Effects of soil chemical properties and seasonality on mycorrhizal status of prickly pear (Opuntia ficus-indica) planted in hot arid steppe rangelands. Sains Malaysiana 44(5): 671-680.DOI: 10.17576/jsm-2015-4405-05
Nell M, Wawrosch C, Steinkellner S, Vierheilig H, Kopp B, Lössl A, Franz C, Novak J, Zitterl-Eglseer K. 2010. Root colonization by symbiotic arbuscular mycorrhizal fungi increases sesquiterpenic acid concentrations in Valeriana officinalis L. Planta Med 76(4): 393–398.
Pacioni G. 1992. Wet-sieving and decanting techniques for the extraction of spores of vesicular-arbuscular fungi. In Norris JR, Read DJ, Varma AK (Eds.). Methods in Mycrobiology Vol. 24. Techniques for the Study of Mycorrhiza. Academic Press. Toronto.
Peat HJ, Fitter AH. 1993. The distribution of arbuscular mycorrhizas in the British flora. New Phytol. 125: 845-854
Posada RH, Sánchez dePM, Heredia AG, Sieverding E. 2018. Effects of soil physical and chemical parameters, and farm management practices on arbuscular mycorrhizal fungi communities, and diversities in coffee plantations in Colombia and Mexico. Agroforestry Systems 92(2): 555-574.
Powell JR, Rillig MC. 2018. Biodiversity of arbuscular mycorrhizal fungi and ecosystem function. New Phytol. 220 (4): 1059–1075. https://doi.org/10.1111/nph.15119
Pozo de la Hoz J, Rivero J, Azcón-Aguilar C, Urrestarazu M, Pozo MJ. 2021. Mycorrhiza-induced resistance against foliar pathogens is uncoupled of nutritional effects under different light intensities. J. Fungi (Basel) 7(6): 402. https://doi.org/ 10.3390/jof7060402
Rojas YdelCP, Arias RM, Ortiz RM, Aguilar DT, Heredia G, Yon YR. 2019. Effects of native arbuscular mycorrhizal and phosphate-solubilizing fungi on coffee plants. Agroforestry System 93: 961–972. https://doi.org/10.1007/s10457-018-0190-1
Shukla A, Vyas D, Jha A. 2013. Soil depth: an overriding factor for distribution of arbuscular mycorrhizal fungi. Journal of Soil Science and Plant Nutrition 13(1): 23-33
Smith SE, Read DJ. 2008. Mycorrhizal Symbiosis. 3rd ed. Academic Press. San Diego.
Stürmer SL, Oliveira LZ, Morton JB. 2018. Gigasporaceae versus Glomeraceae (phylum Glomeromycota): a biogeographic tale of dominance in maritime sand dunes. Fungal Ecol. 32: 49–56. https://doi.org/10.1016/j.funeco.2017.11.008
Taherdoost H. 2016. Sampling methods in research methodology; How to choose a sampling technique for research. International Journal of Academic Research in Management (IJARM) 5(2): 18-27.
Tedersoo L, Anslan S, Bahram M, Drenkhan R, Pritsch K, Buegger F, Padari A, Hagh-Doust N, Mikryukov V, Gohar D, et al. 2020. Regional-scale in-depth analysis of soil fungal diversity reveals strong pH and plant species effects in Northern Europe. Frontiers in Microbiology 11, https://doi.org/10.3389/fmicb.2020.01953
Turrini A, Bedini A, Loor MB, Santini G, Sbrana C, Giovannetti M, Avio L. 2018. Local diversity of native arbuscular mycorrhizal symbionts differentially affects growth and nutrition of three crop plant species. Biology and Fertility of Soils 54: 203–217. https://doi.org/10.1007/s00374-017-1254-5
USDA. 2019. Global Agricultural Information Network: Vietnam Coffee Annual 2019. United States: USDA Foreign Agricultural Service p. 1–8. Report No. VM9020.
Venter ZS, Jacobs K, Hawkins HJ. 2016. The impact of crop rotation on soil microbial diversity: a meta-analysis. Pedobiologia 59(4): 215–223. https://doi.org/10.1016/j.pedobi.2016.04.001
Vieira LC, da Silva DKA, de Melo MAC, Escobar IEC, Oehl F, Silva GA. 2019. Edaphic factors influence the distribution of arbuscular mycorrhizal fungi along an altitudinal gradient of a tropical mountain. Microbial Ecology 78: 904-913. https://doi.org/10/1007/s00248-019-01354-2
Vizzini A, Consiglio G, Setti L. 2020. Testing spore amyloidity in Agaricales under light microscope: the case study of Tricholoma. IMA Fungus 11(24). https://doi.org/10.1186/s43008-020-00046-8

Most read articles by the same author(s)