The anatomical structure of the root, stem, and branch of Gyrinops versteegii trees from different growing sites

##plugins.themes.bootstrap3.article.main##

ARIEL ADIMAHAVIRA
GANIS LUKMANDARU
RINI PUJIARTI
FANANY WURI PRASTIWI
WIDYANTO DWI NUGROHO

Abstract

Abstract. Adimahavira A, Lukmandaru G, Pujiharti R, Prastiwi FW, Nugroho WD. 2023. The anatomical structure of the root, stem, and branch of Gyrinops versteegii trees from different growing sites. Biodiversitas 24: 4590-4598. Gyrinops versteegii (Gilg) Domke is an agarwood (Gaharu)-producing species with a unique color and very expensive fragrance. Even so, studies on the effects of growing sites on the wood anatomical structure of several parts of G. versteegii have not been thoroughly investigated. Therefore, this research aims to investigate the anatomical structure of G. versteegii on the tree's root, stem, and branch at two different growing sites. Three five-year-old G. versteegii trees from Pacitan and Klaten Districts (Indonesia) were used for the experiment and were harvested from the root, stem, and branch. The wood samples were then put in a glutaraldehyde solution for 24 hours and later in an alcohol solution. The samples were sliced in microtome (15-20 µm) and observed in the transverse, tangential, and radial sections. The results showed that the anatomical characteristics, such as vessel diameter, ray height, ray frequency, interxylary phloem proportion, and frequency differed significantly between growing sites. Furthermore, fiber length, vessel diameter, ray height, ray frequency, and interxylary phloem proportion significantly differed among plant parts. In addition, the branch part has the highest interxylary phloem value, indicating the possibility of a high agarwood resin deposit when agarwood stimulation is applied.

##plugins.themes.bootstrap3.article.details##

References
Abdulah L, Susanti R, Rahajoe JS, Atikah TD, Subarudi S, Dewi R, Heriansyah I, Qirom MA, Rahmawati K, Hidayat A. 2022. Feasibility of agarwood cultivation in Indonesia: Dynamic system modeling approach. Forests 13: 1-20. DOI: 10.3390/f13111869.
Andianto. 2010. Ciri anatomi lima jenis kayu penghasil gaharu dan dua jenis kerabatnya. Jurnal Penelitian Hasil Hutan 28 (2): 169-183. DOI: 10.20886/jphh.2010.28.2.169-183. [Indonesian]
Arni? D, Gri?ar J, Jevšenal J, Božic G, von Arx G, Prislan P. 2021. Dfferent wood anatomical and growth responses in European beech (Fagus sylvatica L.) at three forest sites in Slovenia. Front Plant Sci 12: 669229. DOI: 10.3389/fpls.2021.669229.
Asdar M. 2006. Karakteristik anatomi kayu gaharu daun beringin (Gyrinops versteegii (Gilg.) Domke) dari Gorontalo. Jurnal Perennial 3 (1): 6-10. DOI: 10.24259/perennial.v3i1.163.
Badan Pusat Statistik (BPS) Kabupaten Klaten. 2013. Kabupaten Klaten dalam Angka 2013. Kabupaten Klaten, Klaten. [Indonesian]
Badan Pusat Statistik (BPS) Kabupaten Pacitan. 2014. Statistik Daerah Kabupaten Pacitan 2014. BPS Kabupaten Pacitan, Pacitan. [Indonesian]
Badan Pusat Statistik (BPS) Kabupaten Pacitan. 2015. Statistik Daerah Kabupaten Pacitan 2015. BPS Kabupaten Pacitan, Pacitan. [Indonesian]
Badan Pusat Statistik (BPS) Kabupaten Pacitan. 2016. Rata-rata suhu dan kelembapan udara menurut bulan di Kabupaten Pacitan 2016. Kabupaten Pacitan. [Indonesian]
Badan Pusat Statistik (BPS) Kabupaten Pacitan. 2016. Statistik Daerah Kabupaten Pacitan 2016. BPS Kabupaten Pacitan, Pacitan. [Indonesian]
Badan Pusat Statistik (BPS) Kabupaten Pacitan. 2017. Rata-rata suhu dan kelembapan udara menurut bulan di Kabupaten Pacitan 2017. Kabupaten Pacitan. https://pacitankab.bps.go.id/statictable/2018/11/07/213/rata-rata-suhu-dan-kelembaban-udara-menurut-bulan-di-kabupaten-pacitan-2017.html. [Indonesian]
Badan Pusat Statistik (BPS) Provinsi Jawa Tengah. 2013. Jawa Tengah dalam Angka 2013. BPS Provinsi Jawa Tengah, Semarang. [Indonesian]
Badan Pusat Statistik Kabupaten Pacitan. 2017. Statistik Daerah Kabupaten Pacitan 2017. BPS Kabupaten Pacitan, Pacitan. [Indonesian]
Badan Pusat Statistik Kabupaten Pacitan. 2018. Statistik Daerah Kabupaten Pacitan 2018. BPS Kabupaten Pacitan, Pacitan. [Indonesian]
Badan Pusat Statistik Provinsi Jawa Tengah. 2014. Jawa Tengah dalam Angka 2014. BPS Provinsi Jawa Tengah, Semarang. [Indonesian]
Badan Pusat Statistik Provinsi Jawa Tengah. 2015. Jawa Tengah dalam Angka 2015. BPS Provinsi Jawa Tengah, Semarang. [Indonesian]
Badan Pusat Statistik Provinsi Jawa Tengah. 2016. Jawa Tengah dalam Angka 2016. BPS Provinsi Jawa Tengah, Semarang. [Indonesian]
Badan Pusat Statistik Provinsi Jawa Tengah. 2017. Jawa Tengah dalam Angka 2017. BPS Provinsi Jawa Tengah, Semarang. [Indonesian]
Chaabouni AC. 2014. Mechanism and adaptation of plants to environmental stress: A case of woody species. In: Ahmad P, Wani MR (eds). Physiological Mechanisms and Adaptation Strategies in Plants Under Changing Environment. Springer, New York. DOI: 10.1007/978-1-4614-8591-9_1.
Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES). 2023. Gyrinops versteegii. https://cites.org/eng/taxonomy/term/41551
de Alwis WNH, Subasinghe SMCUP, Hettiarachchi DS. 2019. Characterisation and variation of agarwood resins from Gyrinops walla. J Trop For Sci 31 (2): 222-229. DOI: 10.26525/jtfs2019.31.2.222229.
Dunham SM, Lachenbruch B, and Ganio LM. 2007. Bayesian analysis of douglas-fir hydraulic architecture at multiple scales. Trees 21: 65-78. DOI: 10.1007/s00468-006-0097-8.
Dwianto W, Kusumah SS, Darmawan T, Amin Y, Bahanawan A, Pramasari DA, Lestari E, Himmi SK, Hermiati E, Fatriasari W, Laksana RPB, Damayanti R. 2019. Anatomical observation and characterization on basic properties od agarwood (Gaharu) as an appendix II CITES. IOP Conf Ser Earth Environ Sci 374: 012062. DOI: 10.1088/1755-1315/374/1/012062.
Faizal A, Hermawaty D, Junita E, Rahmawati A, Priharti AW, Makajanma MM, Turjaman M. 2022. Evaluation of biotic stressors to artificially induce agarwood production in Gyrinops versteegii (Gilg.) Domke seedling. Symbiosis 86: 229-239. DOI: 10.1007/s13199-022-00835-2.
February E. 1993. Sensitivity of xylem vessel size and frequency to rainfall and temperature: Implications for palaeontology. Palaeontol Electron 30: 91-95.
Fortunel C, Ruelle J, Beauchene J, Fine PVA, Baraloto C. 2014. Wood specific gravity of branches and roots in 113 Amazonian rainforest tree species across environmental gradients. New Phytol 202: 79-94. DOI: 10.1111/nph.12632.
Gerolamo CS, Angyalossy V. 2017. Wood anatomy and conductivity in lianas, shrubs and trees of Bignoniaceae. IAWA J 38 (3): 412-432. DOI: 10.1163/22941932-20170177.
Hietz P, Rungwattana K, Scheffknecht S, George J-P. 2022. Effects of provenance, growing site, and growth on Quercus robur wood anatomy and density in a 12-year-old provenance trial. Front Plant Sci 13: 795941. DOI: 10.3389/fpls.2022.795941.
Jayachandran K, Sekar I, Parthiban KT, Amirtham D, Suresh KK. 2015. Analysis of different grades of agarwood (Aquilaria malaccensis Lamk.) oil through GCMS. Indian J Nat Prod Resour 5 (1): 44-47.
Kang Y. 2021. Molecular identification of Aquilaria species with distribution records in China using DNA barcode technology. Mitochondrial DNA B: Resour 6 (4): 1525-1535. DOI: 10.1080/23802359.2021.1914210.
Kiaei M, Moya R. 2015. Physical properties and fiber dimension in stem, branch and root of alder wood. Fresenius Environ Bull. 24: 335-342.
Lima IL, Longui EL, Santini-Junior L, Garcia NJ, Borges F, Monteiro S. 2010. Effect of fertilization on cell size in wood of Eucalyptus grandis Hill ex Maiden. CERNE 16: 465-472. DOI: 10.1590/s0104-77602010000400006.
Liu P, Zhang X, Yang Y, Sui C, Xu Y, Wei J. 2019. Interxylary phloem and xylem rays are the structural foundation of agarwood resin formation in the stems of Aquilaria sinensis. Trees 33: 533-542. DOI: 10.1007/s00468- 018-1799-4.
Liu Y, Chen H, Yang Y, Zhang Z, Wei J, Meng H, Chen W, Feng J, Gan B, Chen X, Gao Z, Huang J, Chen B, Chen H. 2013. Whole-tree agarwood-indusing technique: An efficient novel technique for producing high-quality agarwood in cultivated Aquilaria sinensis tree. Molecules 18: 3086-3106. DOI: 10.3390/molecules18033086.
Liu YY, Wei JH, Gao ZH, Zhang Z, Lyu JC. 2017. A review of quality assessment and grading for agarwood. Chin Herb Med 9 (1): 22-30. DOI: 10.1016/S1674-6384(17)60072-8.
Longui E, Galão ATD, Rajput K, de Melo ACG. 2018. Anatomical investigation of root, stem and branch wood in 10-year-old Inga laurina in the context of anatomical adaptation to hydraulic and mechanical stresses. Ann Biol 31-39. DOI: 10.6018/analesbio.40.04.
Longui EL, Rajput KS, De Melo ACG, Alves LDA, Do Nascimento CB. 2017. Root to branch wood anatomical variation and its influence on hydraulic conductivity in five Brazilian Cerrado species. Bosque 38 (1): 183-193. DOI: 10.4067/S0717-92002017000100018.
Lukman, Dinarti D, Siregar UJ, Turjaman M, Sudarsono. 2022. Characterization and identification of agarwood-producing plants (Aquilaria spp.) from North Aceh, Indonesia, based on morphological and molecular markers. Biodiversitas 23 (9): 4861-4871. DOI: 10.13057/biodiv.d230955.
Mandang YI, Wiyono B. 2002. Bulletin Penelitian Hasil Hutan: Anatomi Kayu Gaharu (Aquilaria malaccensis Lamk.) dan Beberapa Jenis Sekerabat. Puslitbang Teknologi Hasil Hutan Bogor, Bogor. [Indonesian]
Marcati CR, Longo LR, Wiedenhoeft A, Barros CF. 2014. Comparative wood anatomy of root and stem of Citharexylum myrianthum (Verbenaceae). Rodriguésia 65 (3): 567-576. DOI: 10.1590/2175-7860201465301.
Melo Junior JCFD, Amorim MW, Soffiatti P. 2018. Comparative wood anatomy of Ficus cestrifolia (Moraceae) in two distinct soil conditions. Rodriguésia 69 (04): 2109-2118. DOI: 10.1590/2175-7860201869440.
Miranda TD, Palhares D, Cury NF, Pereira LAR, Silveira CEDS. 2018. Comparative wood and bark anatomy of stem, root and xylopodium of Jacaranda ulei (Bignoniaceae). Balduinia 64: 01-18. DOI: 10.5902/2358198032114.
Mohamed R, Wong MT, Halis R. 2013. Microscopic observation of ‘Gaharu’ wood from Aquilaria malaccensis. Pertanika J Trop Agric Sci 36 (1): 43-50.
National Standardization of Indonesia. 2011. Standar Nasional Indonesia (SNI): SNI 7631:2011 (Gaharu). BSN, Jakarta. [Indonesian]
Pasaribu G, Winarni I, Gusti REP, Maharani R, Fernandes A, Harianja AH, Saragih GS, Turjaman M, Tampubolon AP, Kuspradini H, Lukmandaru G, Njurumana GN, Sukito A, Aswandi A, Kholibrina CR. 2021. Current challenges and prospects of Indonesian non-timber forest products (NTFPs): A review. Forests 12: 1743. DOI: 10.3390/f12121743.
Pfautsch S. 2016. Hydraulic anatomy and function of trees - Basics and critical developments. Curr For Rep 2: 236-248. DOI: 10.1007/s40725-016-0046-8.
Rocha MFV, Veiga TRLA, Soares BCD, Araujo ACC, Carvalho AMM, Hein PRG. 2019. Do the growing conditions of trees influence the wood properties? Floresta e Ambiennte 26 (3). DOI: 10.1590/2179-8087.035318.
Schuldt B, Leuschner C, Brock N, Horna V. 2013. Changes in wood density, wood anatomy and hydraulic properties of the xylem along the root-to-shoot flow path in tropical rainforest trees. Tree Physiol 33: 161-174. DOI: 10.1093/treephys/tps122.
Slupianek A, Dolzblasz A, Sokolowska K. 2021. Xylem parenchyma-role and relevance in wood functioning in trees. Plants 10: 1247. DOI: 10.3390/plants10061247.
Susmianto A, Maman T, Setio P. 2014. Rekam Jejak: Gaharu Inokulasi, Teknologi Badan Litbang Kehutanan. FORDA Press, Bogor. [Indonesian]
Talbert JT, Jett JB. 1981. Regional specific gravity values for plantation grown loblolly pine in the Southeastern United States. For Sci 27: 801-807.
Wahyudi. 2013. Buku Pegangan Hasil Hutan Bukan Kayu. Pohon Cahaya, Yogyakarta. [Indonesian]
Wheeler EA, Baas P, Gasson E. 1989. IAWA (International Association of Wood Anatomist) list of microscopic features for hardwood identification. IAWA Bullet 10 (3): 219-332. DOI: 10.1002/fedr.19901011106.
Wulandari L. 2014. Analisis Neraca Air untuk Arahan Penggunaan Lahan Optimal di Sub DAS Grindulu Kabupaten Pacitan. [Thesis]. Fakultas Kehutanan Universitas Gadjah Mada, Yogyakarta. [Indonesian]
Yaman B. 2014. Anatomical differences between stem and branch wood of Ficus carica L. subsp. carica. Mod Phytomorphol 6: 79-83.
Yelnititis. 2014. Perbanyakan tunas Gyrinops versteegii (Gilg.) Domke. Jurnal Pemuliaan Tanaman Hutan 8 (2): 108-120. DOI: 10.20886/jpth.2014.2.108-120. [Indonesian]
You R, Zhu N, Deng X, Wang J, Liu F. 2021. Variation in wood physical properties and effects of climate for different geographic sources of Chinese fir in subtropical area of China. Sci Rep 11 (1): 4664. DOI: 10.1038/s41598-021-83500-w.
Zhang Y, Meng H, Lyu F, Fan X, Liu P, He X, Huang Y, Chen B, Yang Y, Wei J. 2022. Temporal characteristics of agarwood formation in Aquilaria sinensis after applying whole-tree agarwood-inducing technique. Chin Herb Med 15 (1): 37-44. DOI: 10.1016/j.chmed.2022.07.003.
Zobel BJ, van Buijtenen JP. 1989. Wood Variation - Its Causes and Control. Springer-Verlag, Berlin. DOI: 10.1007/978-3-642-74069-5.