Radial variability of fibrovascular bundle properties of salacca (Salacca zalacca) fronds cultivated on Turi Agrotourism in Yogyakarta, Indonesia

##plugins.themes.bootstrap3.article.main##

LUTHFI HAKIM
RAGIL WIDYORINI
WIDYANTO DWI NUGROHO
TIBERTIUS AGUS PRAYITNO3

Abstract

Abstract. Hakim L, Widyorini R, Nugroho WD, Prayitno TA. 2021. Radial variability of fibrovascular bundle properties of salacca (Salacca zalacca) fronds cultivated on Turi Agrotourism in Yogyakarta, Indonesia. Biodiversitas 22: 3594-3603. Fibrovascular bundles have properties variability not only based on species and varieties but also parts of species. This study, therefore, aims to characterize the FVB fundamental properties (anatomical, chemical, physical and mechanical) of Salacca zalacca (Gaertn.) Voss fronds, based on radial direction. The salacca fronds were divided into three parts, outer, middle as well as inner positions. Then the FVB's anatomical and physical properties were observed by light microscope and gravimetry analysis, respectively. Meanwhile, the variability of chemical and mechanical properties was investigated based on the ASTM standard. According to the results, the outer position has a higher variability of diameter, density, cellulose, lignin, and mechanical properties than the inner position, but has a lower hemicellulose value than the middle and inner position. Furthermore, the relationships between the anatomical, physical, chemical, and mechanical properties were discovered to form a pattern where increasing the mechanical properties is influenced by density and ratio vascular tissue area to total transverse area. Based on the results, the fibrovascular bundle of S. zalacca frond was concluded to possess anatomical, physical, chemical, and mechanical properties variability on the radial direction. There was a correlation between anatomical properties and mechanical properties.

##plugins.themes.bootstrap3.article.details##

References
ASTM D 1102-84. 2001. Standard test method for ash in wood. ASTM International West Conshohocken, USA.
ASTM D 3379-75. 1989. Standard test method for tensile strength and Young’s modulus for high-modulus single-filament materials. ASTM International, West Conshohocken, USA.
ASTM D1103-84. 2013. Standard test method for alfa-cellulose in wood. ASTM International, West Conshohocken, USA.
ASTM D1104-84. 2013. Standard test method for holocellulose in wood. ASTM International, West Conshohocken, USA.
ASTM D1105-96. 2013. Standard test method for preparation of extractive - free wood. ASTM International, West Conshohocken, USA.
ASTM D1106-84. 2013. Standard test method for Acid insoluble lignin in wood. ASTM International, West Conshohocken, USA.
ASTM D1110-84. 2013. Standard test method for water solubility of wood. ASTM International, West Conshohocken, USA.
Baley C. 2002. Analysis of the flax fibres tensile behaviour and analysis of the tensile stiffness increase. Composite-Part A: Applied Science and manufactureing 33(7): 939-948. DOI: 10.1016/S1359-835X(02)00040-4.
Budiyanti T, Hadiati S, Prihatini R, and Sobir. 2015. Genetic diversity of Indonesian snake fruits as food diversification resources. International Journal on Advanced Science Engineering Information Technology 5(3):41-44.
Carlquist S. 2012. Monocot Xylem Revisited: New Information, New Paradigms. Bot. Rev, 78: 87-153. DOI 10.1007/s12229-012-9096-1
Darwis A and Iswanto AH. (2018). “Morphological characteristics of Bambusa vulgaris and the distribution and shape of vascular bundles therein,” Journal of Korean Wood Science and Technology. 46(4), 315-322.
Darwis A, Nurrochmat DR, Massijaya MY, Nugroho N, Alamsyah EM, Bachtiar ET, Safe’i R. 2013. Vascular bundle distribution effect on density and mechanical properties of oil palm trunk. Asian Journal of Plant Science (12)5: 208-213.
Davies P, Morvan C, Sire O, and Baley C. 2007. Structure and properties of fibres from sea-grass (Zostera marina). Journal of Materials Science 42(13): 4850-4857.
Duval A, Bourmaud A, Augier L, and Baley C. 2011. Influence of the sampling area of the stem on the mechanical properties of hemp fibers. Materials letters 65: 797-800. doi:10.1016/j.matlet.2010.11.053.
Elly SS, Watuguly TW, and Rumahlatu D. 2018. Short Communication: Genetic diversity of Salacca edulis from West Seram District, Maluku, Indonesia based on morphological characters and RAPD profiles. Biodiversitas 19(5): 1777-1782. DOI: 10.13057/biodiv/d190526.
Fathi L, Frühwald A, and Koch G. 2014. Distribution of lignin in vascular bundles of lignification and tensile strength in single UV-spectroscopy and relationship between coconut wood (Cocos nucifera) by cellular vascular bundles. Holzforschung 68(8): 915-925.
Grosser D, and Liese W. 1971. On the anatomy of Asian bamboos, with special reference to their vascular bundles. Wood Science and Technology 5(4): 290-312. DOI: 10.1007/BF00365061.
Hakim L, Widyorini R, Nugroho WD, and Prayitno TA. 2019. Anatomical, chemical, and mechanical properties of fibrovascular bundles of Salacca (Snake Fruit) Frond. BioResources 14(2): 7943–57. DOI: 10.15376/biores.14.4.7943-7957.
Herawati W, Amurwanto A, Nafi’ah Z, Ningrum AM, and Samiyarsih S. 2018. Variation analysis of three Banyumas local salak cultivars (Salacca zalacca) based on leaf anatomy and genetic diversity. Biodiversitas 19(1): 119-125. DOI: 10.13057/biodiv/d190118.
Jahan MS, Chowdhury DAN, and Islam MK. 2006. Characterization and evaluation of golpata fronds as pulping raw materials. Bioresource Technology, 97: 401-406.
Khalil HPSA, Alwani, MS, Ridzuan R, Kamarudin H, and Khairul A. 2008. Chemical composition, morphological characteristics, and cell wall structure of Malaysian oil palm fibers. Polymer-Plastics Technology and Engineering 47(3): 273-280. DOI: 10.1080/03602550701866840.
Li H, and Shen S. 2011. The mechanical properties of bamboo and vascular bundles. Journal of Material Sciense. 26(21): 2749-2756. DOI: 10.1557/jmr.2011.314.
Mogea JP. 1986. A new spesies in the genus Salacca. Principes 30(4): 161-164.
Mogea JP.1980. The flabellata-leafed species of Salacca (Palmae). Reinwardtia. Journal on Taxonomic Botany, Plant Sociology and Ecology 9(4): 461-470.
Munawar SS, Umemura K, and Kawai S. 2007. Characterization of the morphological, physical, and mechanical properties of seven nonwood plant fiber bundles. Journal of Wood Science 53(2): 108-113.DOI:10.1007/s10086-006-0836-x.
Osabor VN, Egbung GE, and Okafor PC. 2008. Chemical profile of Nypa fruticans from cross River Estuary, South Eastern Nigeria. Pakistan Journal of Nutrition 7(1): 146-150.
Pareek OP and Sharma S. 2009. Underutilized fruit and nuts. In: Fruit and tropical region Vol. 2. Aavishkar Publishers, Distributors Jaipur 302 003 (Raj.), India.
Razera IAT, and Frollini E. 2003. Composites based on jute fibers and phenolic matrices: properties of fibers and composites. Journal of Applied Polymer Science 91: 1077-1085.
Saadaoui N, Rouilly A, Fares K, and Rigal L. 2013. Characterization of date palm lignocellulosic by-products and self-bonded composite materials obtained thereof. Materials and Design 50: 302-308. http://dx.doi.org/10.1016/j.matdes.2013.03.011.
Santhoshkumar R, and Bath KV. 2014. Variation in density and its relation to anatomical properties in bamboo culms, Bambusa Bambos (L) Voss. Journal of Plant Science 2(3): 108-112. DOI: 10.11648/j.jps.20140203.12
Satyanarayana KG, Pillai CKS, Sukumaran K, Pillai SGK, Rohatgi PK, and Vijayan K. 1982. Structure property studies of fibres from various parts of the coconut tree. Journal of Materials Science 17(8): 2453-2462. DOI: 10.1007/BF00543759.
Siam NA, Uyup MKA, Husain H, Mahmod AL, Awalluddin MF. 2019. Anatomical, physical and mechanical properties of thirteen Malaysian bamboo species. BioResources 14(2):3925-3943.
Srivaro S, Matan N, and Lam F. 2018. Property gradients in oil palm trunk (Elaeis guineensis). Journal of Wood Science 64 (6): 709–719. https://doi.org/10.1007/ s10086-018-1750-8.
Srivaro S, Tomad J, Shi J, and Cai J. 2020. Characterization of coconut (Cocos nucifera) trunk’s properties and evaluation of its suitability to be used as raw material for cross laminated timber production. Construction and Building Material 254: 1-14.
Suskendriyati H, Wijayati A, Hidayah N, and Cahyuningdari D. 2000. Studies on morphological and phylogenetic relationship of salak pondoh varieties (Salacca zalacca (Gaert.) Voss.) at Sleman Highlands. Biodiversitas 1(2): 59-64. DOI: 10.13057/biodiv/d010204.
Tamunaidu P, and Saka S. 2011. Chemical characterization of various parts of nipa palm (Nypa fruticans). Industrial Crops and Products 34(3): 1423-1428. DOI: 10.1016/j.indcrop.2011.04.020.
Tomlinson PB, Fisher JB, Spangler RE, and Richeer RA. 2001. Stem vascular architecture in the rattan palm calamus (arecaceae-calamoideae-calaminae). American Journal of Botany 88(5): 797-809.
Tomlinson PB. 2006. The uniqueness of palm. Botanical Journal of the Linnean Society 151: 5-14.
Uji T. 2007. Species diversity of indigenous fruits in Indonesia and its potential: a Review. Biodiversitas 8(2): 156-167.
Wahab, R., Mohamed, A., Mustafa, M. T., and Hasan, A. (2009). “Physical Characteristic and anatomical properties of cultivated bamboo (Bambusa vulgaris Schrad.) culms,” Journal of Biological Science, 9(7), 753-759.
Wang Y, Zhan H, Ding Y, Wang S, and Lin S. 2016. Variability of anatomical and chemical properties with age and height in Dendrocalamus brandisii. BioResources 11(1): 1202-1213.
Zhai S, Imai T, Horikawa Y, and Sugiyama J. 2013. Anatomical and mechanical characteristics of leaf-sheath fibrovascular bundles in palms. IAWA Journal 34(3): 285-300. DOI: 10.1163/22941932-00000024.
Zhai S, Li D, Pan B, Sugiyama J, and Itoh T. 2012. Tensile strength of windmill palm (Trachycarpus fortunei) fiber bundles and its structural implications. Journal of Materials Science 47(2): 949-959. DOI: 10.1007/s10853-011-5874-0.
Zumaidar, Chikmawati T, Hartana A, Sobir, Mogea JP, and Borchsenius F. 2014. Salacca acehensis (Arecaceae), A new species from Sumatra, Indonesia. Phytotaxa 159 (4): 287–290. http://dx.doi.org/10.11646/phytotaxa.159.4.5.

Most read articles by the same author(s)