Morphophysiological responses and tolerance of various sweet corn (Zea mays convar. saccharata) hybrids to shade stress

##plugins.themes.bootstrap3.article.main##

VIRGIANA FITRI UTARI
MUHAMAD ACHMAD CHOZIN
DHIKA PRITA HAPSARI
ARYA WIDURA RITONGA

Abstract

Abstract. Utari VF, Chozin MA, Hapsari DP, Ritonga AW. 2023. Morphophysiological responses and tolerance of various sweet corn (Zea mays convar. saccharata) hybrids to shade stress. Biodiversitas 24: 4438-4447. Expanding lands for cultivating sweet corn (Zea mays convar. saccharata) is a strategy to increase its production. Yet, the available lands for sweet corn extensification might be those with existing tree stands with some extent of shading. Planting sweet corn under tree stands affects its growth and productivity since there is a reduction in light intensity, but some superior varieties might tolerate such stress. This study aimed to determine the growth, yield, and shade-tolerance levels of several sweet corn genotypes under shade stress. The experiment adopted a randomized complete block design consisting of two factors, namely shading (i.e. control or 0% shade and 50% shade) and sweet corn genotype (16 genotypes). The observed parameters included morphological traits (plant height, leaf number, leaf length, leaf width, and stem diameter), physiological traits (stomatal density and trichome density), yield attributes (cob weight with husks, cob weight without husks, cob length, cob diameter, and total soluble solid), and stress tolerance index (STI). The tested genotypes responded differently to shading. In general, 50% shade significantly reduced cob production, with an average decrease of more than 50% compared to the control. Commercial varieties, namely Exotic (G13), Talenta (G14), Paragon (G15), and Golden Boy (G16), had relatively higher STI values compared to the hybrids. Among the hybrids, the highest STI values were observed for genotypes resulting from the crosses SM7-8 × SM12-2 (G11) and SM11-6 × SM12-2 (G12). The results of this study recommend that commercial varieties can be cultivated under tree stands or low light intensity and can be used to develop high-yielding shade-tolerant sweet corn varieties.

##plugins.themes.bootstrap3.article.details##

References
Bing-xiao WEN, Hussain S, Jia-yue Y, Shan W, Yi Z, Si-si O, Mei X, Wen-yu Y, Wei-guo L. 2020. Rejuvenating soybean (Glycine max L.) growth and development through slight shading stress. Journal of Integrative Agriculture 19(10): 2439-2450. DOI: 10.1016/S2095-3119(20)63159-8.
Chen H, Li QP, Zeng YL, Deng F, Ren WJ. 2019. Effect of different shading materials on grain yield and quality of rice. Scientific Report 9: 9992. DOI: 10.1038/s41598-019-46437-9.
Ertiro BT, Ogugo V, Worku M, Das B, Olsen M, Labuschagne M, Semagn K. 2015. Comparison of kompetitive allele specific PCR (KASP) and genotyping by sequencing (GBS) for quality control analysis in maize. BMC Genomics 16(908). DOI: 10.1186/s12864-015-2180-2.
Fan Y, Chen J, Wang Z, Tan T, Li S, Li J, Wang B, Zhang J, Cheng Y, Wu X. 2019. Soybean (Glycine max L. Merr.) seedlings response to shading: leaf structure, photosynthesis and proteomic analysis. BMC Plant Biol 19(1). DOI: 10.1186/s12870-019-1633-1.
Fernandez GCJ. 1982. Effective selection criteria for assessing plant stress tolerance. In: Kuo CG (ed), Proceedings of the International Symposium on Adaptation of Vegetables and Other Food Crops in Temperature and Water Stress. Taiwan AVRDC, Tainan, 13-18 August 1992. [Taiwan]
Gray SB, Brady SM. 2016. Plant developmental responses to climate change. Developmental Biology 419: 64-77. http://dx.doi.org/10.1016/j.ydbio.2016.07.023.
Hamdani KK, Susanto DH. 2020. Development of shade tolerant varieties to support improvement of food crops production. Planta Simbiosa 2(1).
Heryanto FSS, Wirnas D, Ritonga AW. 2022. Diversity of twenty-three sweet corn (Zea mays L. Saccharata) varieties in Indonesia. Biodiversitas 23(11): 6075-6081.
Heyneke E, Luschin-Ebengreuth N, Krajcer I, Muller M, Zechmann B. 2013. Dynamic compartment specific changes in glutathione and ascorbate levels in Arabidopsis plants exposed to different light intensities. BMC Plant Biology 13: 104.
Hryhoriv Y, Butenko A, Masyk I, Onychko T, Davydenko G, Bondarieva L, Hotvianska A, Horbunova K, Yevtushenko Y, Mykola V. 2023. Growth and development of sweet corn plants in the agro-ecological conditions of the Western Region of Ukraine. EEET 24(4): 216-222. https://doi.org/10.12912/27197050/162699.
Jauhari S, Samijan, Praptana RH, Setiapermas MN, Utomo B, Oelviani R, Winarni E. 2022. Adaptation of growth and yield of several hybrid corn varieties of Balitbangtan on dryland agroecosystems in young Albasia Forest Area. IOP Conf. Series: Earth and Environmental Science 1107. DOI:10.1088/1755-1315/1107/1/012052.
Khalid M, Raza M, Yu H, Sun F, Zhang Y, Lu F, Si L, Iqbal N, Khan I, Fu F, Li W. 2019. Effect of shade treatments on morphology, photosynthetic and chlorophyll fluorescence characteristics of soybeans (Glycine max L. Merr.). Applied ecology and environmental research 17(2): 2551-2569.
Kim SJ, Yua DJ, Kim TC, Lee HJ. 2011. Growth and photosynthetic characteristics of blueberry (Vaccinium corymbosum cv. Bluecrop) under various shade levels. Scientia Horticulturae 129: 486-492. DOI:10.1016/j.scienta.2011.04.022.
Levitt J. 1980. Responses of Plants to Environmental Stresses: Water, Radiation, Salt, and Other Stresses. Vol. II. Academic Press, New York.
Marroua H, Guilionic L, Dufoura L, Dupraza C, Weryd J. 2013. Microclimate under agrivoltaic systems: Is crop growth rate affected in the partial shade of solar panels?. Agricultural and Forest Meteorology 177: 117–132. http://dx.doi.org/10.1016/j.agrformet.2013.04.012.
Masabni J, Sun Y, Niu Y, Valle PD. 2016. Shade effect on growth and productivity of tomato and chili pepper. HortTechnology 26(3): 344-350. https://doi.org/10.21273/HORTTECH.26.3.344.
Meriati. 2019. Pertumbuhan dan hasil jagung manis (Zea may saccharata) pada pertanian organik. Embrio 11(1): 24-35.
Moradi H, Akbari GA, Khorasani SK, Ramshini HA. 2012. Evaluation of drought tolerance in maize (Zea mays L.) new hybrids with using stress tolerance indices. Eur J of Sustainable Development 1: 543-559.
Perrin PM, Mitchell FJG. 2013. Effects of shade on growth, biomass allocation and leaf morphology in european yew (Taxus baccata L.). Eur J of Forest Research 132(2): 211-218.
Rahman SA, Baral A, Sharma R, Samsudin YB, Meyer M, Lo M, Artati Y, Simamora TJ, Andini S, Leksono B, Roshetko JM, Lee SM, Sunderland T. 2019. Integrating bioenergy and food production on degraded landscapes in Indonesia for improved socioeconomic and environmental outcomes. Food and Energy Security 8(3). DOI: 10.1002/fes3.165.
Ritonga AW, Chozin MA, Syukur M, Maharijaya A, Sobir. 2019. Short communication: Genetic variability, heritability, correlation, and path analysis in tomato (Solanum lycopersicum) under shading condition. Biodiversitas 19(4): 1527-1531. DOI: 10.13057/biodiv/d190445.
Rondhi M, Pratiwi PA, Handini VT, Sunartomo AF, Budiman SA. 2018. Agricultural land conversion, land economic value, and sustainable agriculture: a case study in East Java, Indonesia. MDPI 7(4). https://doi.org/10.3390/land7040148.
Ruswandi D, Yuwariah Y, Arianti M, Syafii M, Nuraini A. 2020. Stability and adaptability of yield among earliness sweet corn hybrids in West Java, Indonesia. International Journal of Agronomy 2020. https://doi.org/10.1155/2020/4341906.
Salisbury TB, Ross CW. 1995. Plant Physiology. Terjemahan Diah R. Lukman dan Sumaryono. Jilid I, II, dan III. ITB Bandung.
Schroeder C, Onyango KT, Nar BR, Jick NA, Parzies HK, Gemenet DC. 2013. Potentials of hybrid maize varieties for small-holder farmers in kenya: a review based on swot analysis. AJFAND 13(2). DOI: 10.18697/ajfand.57.11360.
Sekiyama T, Nagashima A. 2019. Solar sharing for both food and clean energy production: performance of agrivoltaic systems for corn, a typical shade-intolerant crop. Environments 6(6). DOI:10.3390/environments6060065.
Song S, He A, Zhao T, Yin Q, Mu Y, Wang Y, Liu H, Nie L, Peng H. 2022. Effects of shading at different growth stages with various shading intensities on the grain yield and anthocyanin content of colored rice (Oryza sativa L.). Field Crops Research 283. https://doi.org/10.1016/j.fcr.2022.108555.
Sulistyowati D, Chozin MA, Syukur M, Melati M, Guntoro D. Selection of shade-tolerant tomato genotypes. Journal of Applied Horticulture 18(2): 154-159. DOI: https://doi.org/10.37855/jah.2016.v18i02.27.
Supriyono S, Putri RBA, Wijayanti R. 2017. Analisis pertumbuhan garut (Marantha arundinaceae) pada beberapa tingkat naungan. Agrosains 19(1): 22-27. DOI: https://doi.org/10.20961/agsjpa.v19i1.20926.
Syafii M, Rokhman F, Harpenas A. 2021. Genetic diversity, heritability and correlation of quantitative traits sweet corn (Zea mays L. var. Saccharata Sthurt) Ms-unsika inbred lines. In: Iconistech, Proceedings of the 1st International Conference on Islam, Science and Technology, ICONISTECH, Bandung, 11-12 July 2019. [Indonesia]. DOI 10.4108/eai.11-7-2019.2297766.
Taiz L, Zeiger E. 2002. Plant Physiology. The Benjamin/Cummings Pub. Co., Inc, California. 559 p.
Todaka, D, Maruyama K, Kidokoro S, Osakabe Y, Ito Y, Matsukura S, Fujita Y, Yoshiwara K, Ohme-Takagi M, Kojima M, Sakakibara H, Shinozaki K, Yamaguchi-Shinozaki K. 2012. Rice Phytochrome-Interacting Factor-Like Protein Ospil1 Functions as a Key Regularor of Internoe Elongation and Induces a Morphological Response to Drought Stress. PNAS 109(39): 15947-15952. https://doi.org/10.1073/pnas.1207324109
Wu S, Zhao B. 2017. Using Clear Nail Polish to Make Arabidopsis Epidermal Imperssions for Measuring the Change of Stomatal Aperture Size in Immune Response. Methods in Molecular Biology 1578: 243-248. DOI: 10.1007/978-1-4939-6859-6_20.
Yan Z, Huang L, Wei X, Zhou H, Xun C. 2016. Physiological, morphological, and anatomical changes in Rhododendron agastum in response to shading. Plant Growth Regulation 81: 23-30. doi.org/10.1007/s10725-016-0181-z.

Most read articles by the same author(s)