Evaluation of growth and yield potential of three varieties of chili pepper (Capsicum frutescens) intercropped with maize (Zea mays) at different planting times

##plugins.themes.bootstrap3.article.main##

I MADE SATRIA DWI ARTA
MUHAMAD ACHMAD CHOZIN
ARYA WIDURA RITONGA

Abstract

Abstract. Arta IMSD, Chozin MA, Ritonga AW. 2024. Evaluation of growth and yield potential of three varieties of chili pepper (Capsicum frutescens) intercropped with maize (Zea mays) at different planting times. Biodiversitas 25: 3985-3994. Chili pepper (Capsicum frutescens L.) is a horticultural crop with high economic value. Land-use change had led to a decrease in the potential chili pepper cultivation area. One way to overcome this problem is to use intercropping, for example by planting chili peppers with maize. The purpose of this study was to determine suitable planting times and varieties for intercropping. This research was conducted with a nested design with two treatment factors. The first factor, cropping treatment, had four levels: control (chili pepper monoculture) and chili peppers planted (intercropped) at 0, 4, and 6 weeks after maize planting (MSJ). The second factor was chili variety: Bonita, Shadiva and Lobita. The sowing, soil preparation, planting, maintenance, and harvesting methods were the same for each treatment. The results of this study indicate that the 0 MSJ cropping treatment significantly increases plant height, particularly for the Shadiva variety. The Bonita variety was most productive in the 4 MSJ cropping treatment. In contrast, the control exhibited a higher incidence of geminivirus (Geminiviridae) at the same planting time. The optimal selection of planting time, in conjunction with the most suitable varieties, can enhance productivity and suppress the spread of plant diseases.

##plugins.themes.bootstrap3.article.details##

References
Alhidayah D, Chozin MA, Ritonga AW. 2024. The effect of shade on growth and production of several genotypes of cayenne pepper (Capsicum annuum L.). Bul Agrohorti 12 (1): 40-51. DOI: 10.29244/agrob.v12i1.53527. [Indonesian]
Brooker RW, Bennett AE, Cong W-F et al. 2015. Improving intercropping: A synthesis of research in agronomy, plant physiology and ecology. New Phytol 206 (1): 107-117. DOI: 10.1111/nph.13132.
Chitwood DH, Kumar R, Ranjan A, Pelletier JM, Townsley BT, Ichihashi Y, Martinez CC, Zumstein K, Harada JJ, Maloof JN, Sinha NR. 2015. Light-induced indeterminacy alters shade avoiding tomato leaf morphology. Plant Physiol 169: 2030-2047. DOI: 10.1104/pp.15.01229.
Chowdhury MFN, Rafii MY, Ismail SI, Ramlee SI, Hosen M, Rezaul Karim KM, Yusuff O, Ridzuan R. 2023. Genetic analysis of anthracnose resistant and heat tolerant chili inbreed lines based on morpho-physiological characteristics. Chil J Agric Res 83 (2): 168-180. DOI: 10.4067/s0718-58392023000200168.
Devy NF, Hardiyanto, Syah JA, Setyani R, Udiarto BK. 2021. The application of several cultivation practices on growth and production of chili (Capsicum annuum L.) varieties in the rainy season. IOP Conf Ser: Earth Environ Sci 752: 012034. DOI: 10.1088/1755-1315/752/1/012034.
Díaz-Pérez JC, St. John K, Kabir MY, Alvarado-Chávez JA, Cutiño-Jiménez AM, Bautista J, Gunawan G, Nambeesan SU. 2020. Bell pepper (Capsicum annum L.) under colored shade nets: Fruit yield, postharvest transpiration, color, and chemical composition. HortScience 55 (2): 1-7. DOI: 10.21273/hortsci14464-19.
dos Santos SA, Tuffi-Santos LD, Sant’Anna-Santos BF, Tanaka FAO, Silva LF, dos Santos Júnior A. 2015. Influence of shading on the leaf morphoanatomy and tolerance to glyphosate in Commelina benghalensis L. and Cyperus rotundus L. Aust J Crop Sci 9 (2): 135-142.
Fiorucci A-S, Michaud O, Schmid-Siegert E, Trevisan M, Petrolati LA, Ince YÇ, Fankhauser C. 2022. Shade suppresses wound-induced leaf repositioning through a mechanism involving Phytochrome Kinase Substrate (PKS) genes. PLoS Genet 18 (5): e1010213. DOI: 10.1371/journal.pgen.1010213.
Formisano L, Miras-Moreno B, Ciriello M, Zhang L, De Pascale S, Lucini L, Rouphael Y. 2022. Between light and shading: Morphological, biochemical, and metabolomics insights into the influence of blue photoselective shading on vegetable seedlings. Front Plant Sci 13: 890830. DOI: 10.3389/fpls.2022.890830.
Gao Y, Ren C, Liu Y, Zhu J, Li B, Mu W, Liu F. 2021. Pepper-maize intercropping affects the occurrence of anthracnose in hot pepper. Crop Prot 148: 105750. DOI: 10.1016/j.cropro.2021.105750.
Gustiar F, Lakitan B, Budianta D, Negara ZP. 2023. Assessing the impact on growth and yield in different varieties of chili pepper (Capsicum frutescens) intercropped with chaya (Cnidoscolus aconitifolius). Biodiversitas 24 (5): 2639-2646. DOI: 10.13057/biodiv/d240516.
Huss CP, Holmes KD, Blubaugh CK. 2022. Benefits and risks of intercropping for crop resilience and pest management. J Econ Entomol 115 (5): 1350-1362. DOI: 10.1093/jee/toac045.
Kantar MB, Anderson JE, Lucht SA, Mercer K, Bernau V, Case KA, Le NC, Frederiksen MK, DeKeyser HC, Wong Z-Z, Hastings JC, Baumler DJ. 2016. Vitamin variation in Capsicum spp. provides opportunities to improve nutritional value of human diets. PLoS One 11 (8): e0161464. DOI: 10.1371/journal.pone.0161464.
Kermah M, Franke AC, Adjei-Nsiah S, Ahiabor BDK, Abaidoo RC, Giller KE. 2017. Maize-grain legume intercropping for enhanced resource use efficiency and crop productivity in the Guinea savanna of northern Ghana. Field Crops Res 213: 38-50. DOI: 10.1016/j.fcr.2017.07.008.
Liu Y, Dawson W, Prati D, Haeuser E, Feng Y, van Kleunen M. 2016. Does greater specific leaf area plasticity help plants to maintain a high performance when shaded? Ann Bot 118 (7): 1329-1336. DOI: 10.1093/aob/mcw180.
Martin-Guay M-O, Paquette A, Dupras J, Rivest D. 2018. The new Green Revolution: Sustainable intensification of agriculture by intercropping. Sci Total Environ 615: 767-772. DOI: 10.1016/j.scitotenv.2017.10.024.
Mulu M, Ngalu R, Lazar FL. 2020. Intercropping planting pattern in West Satar Punda Village, East Manggarai Regency, East Nusa Tenggara Province. Agrokreatif 6 (1): 72-78. DOI: 10.29244/agrokreatif.6.1.72-78. [Indonesian]
Nagy Z, Daood H, Neményi A, Ambrózy Z, Pék Z, Helyes L. 2017. Impact of shading net color on phytochemical contents in two chili pepper hybrids cultivated under greenhouse conditions. Hortic Sci Technol 35 (4): 418-430. DOI: 10.12972/kjhst.20170045.
Negi PS, Sharma A. 2019. Studies on variability, correlation and path analysis in red ripe chilli genotypes. Intl J Curr Microbiol Appl Sci 8 (4): 1604-1612. DOI: 10.20546/ijcmas.2019.804.186.
Nurhayati E, Purnamaningsih SL. 2019. Shading tolerance on six genotype of chili pepper (Capsicum frutescens L) under the teak (Tectona grandis L.F.). Jurnal Produksi Tanaman 7 (3): 384-391. [Indonesian]
Ollo S, Hervé BDB, Senan S, Sylvain TBC. 2022. Effect of shade on the diversity of termites (Isoptera) in different cocoa agroforestry systems in the Nawa region (Côte d’Ivoire). J Entomol Zool Stud 10 (1): 377-387. DOI: 10.22271/j.ento.2022.v10.i1e.8957.
Pariz CM, Costa NR, Costa C et al. 2020. An innovative corn to silage-grass-legume intercropping system with oversown black oat and soybean to silage in succession for the improvement of nutrient cycling. Front Sustain Food Syst 4: 544996. DOI: 10.3389/fsufs.2020.544996.
Robakowski P, Bielinis E, Sendall K. 2018. Light energy partitioning, photosynthetic efficiency and biomass allocation in invasive Prunus serotina and native Quercus petraea in relation to light environment, competition and allelopathy. J Plant Res 131 (3): 505-523. DOI: 10.1007/s10265-018-1009-x.
Sharma RC, Banik P. 2015. Baby corn-legumes intercropping systems: I. Yields, resource utilization efficiency, and soil health. Agroecol Sustain Food Syst 39 (1): 41-61. DOI: 10.1080/21683565.2014.942764.
Siahaan GF, Chozin MA, Syukur M, Ritonga AW. 2022. Differences in growth, physiological and production responses of 20 chilli genotypes to various shade levels. Jurnal Agronomi Indonesia 50 (1): 73-79. DOI: 10.24831/jai.v50i1.38832. [Indonesian]
Sihombing Y, Purnamayani R. 2021. Intercropping technology to increase cropping index in Central Java, Indonesia. E3S Web Conf 306 (5): 03008. DOI: 10.1051/e3sconf/202130603008.
Tang Y, Shi W, Xia X, Zhao D, Wu Y, Tao J. 2022. Morphological, microstructural and lignin-related responses of herbaceous peony stem to shading. Sci Hortic 293: 110734. DOI: 10.1016/j.scienta.2021.110734.
Tchokponhoué DA, N’Danikou S, Houéto JS, Achigan-Dako EG. 2019. Shade and nutrient-mediated phenotypic plasticity in the miracle plant Synsepalum dulcificum (Schumach. & Thonn.) Daniell. Sci Rep 9 (1): 5135. DOI: 10.1038/s41598-019-41673-5.
Ulinnuha Z, Syarifah RNK. 2022. Photosynthetic pigment content and growth of chili under low light intensity for agroforestry crop development. Agromix 13 (1): 27-33. DOI: 10.35891/agx.v13i1.2783.
Wang B, Zhang Y, Dong N, Chen Y, Zhang Y, Hao Y, Qi J. 2020. Comparative transcriptome analyses provide novel insights into etiolated shoot development of walnut (Juglans regia L.). Planta 252 (5): 74. DOI: 10.1007/s00425-020-03455-6.

Most read articles by the same author(s)