Isolation and molecular characterization of potassium-solubilizing bacteria from limestone mountain of Bahorok, Langkat District, Indonesia

##plugins.themes.bootstrap3.article.main##

IMAM HARTONO BANGUN
HAMIDAH HANUM
https://orcid.org/0000-0002-6883-7566
TENGKU SABRINA
https://orcid.org/0000-0003-2507-6506

Abstract

Abstract. Bangun IH, Hanum H, Sabrina T. 2023. Isolation and molecular characterization of potassium-solubilizing bacteria from limestone mountain of Bahorok, Langkat District, Indonesia. Biodiversitas 24: 4175-4184. In agricultural practices, ensuring an adequate supply of potassium to plants is crucial for optimal growth and productivity. However, the exchangeable K is tightly bound to soil minerals such as mica, feldspar, and clay minerals, making it unavailable for plant uptake. K-solubilizing bacteria K can dissolve potassium from the mineral layer and be available to plants. The Previous study has found 11 bacterial isolates capable of solubilizing K in Aleksandrov solid media. This study aimed to select the best K-solubilizing bacteria for solubilizing K in soil and to perform molecular identification of these bacteria. A novel finding from this study is that specific KSBs enhance the levels of exchangeable K in the soil through various mechanisms, as evidenced by increased exchangeable Ca, Mg, and soil pH. Additionally, the research identified two newly discovered bacterial species capable of potassium solubilization: Paraburkholderia phymatum and Burkholderia paludis. Furthermore, the study suggests the existence of an unknown mechanism for K solubilization, indicated by the observed increase in soil pH during the process.

##plugins.themes.bootstrap3.article.details##

References
Aleksandrov VG, Blagodyr RN, Ilev IP. 1967. Liberation of phosphoric acid from apatite by silicate bacteria. Mikrobiol Z. 29(11):1.
Angraini E, Mubarik NR, Widyastuti R. 2016. Study of potassium solubilizing bacteria from limestone mining area in Palimanan, Cirebon Quarry. Malays J Microbiol. 12(1):62–68.
Bangun IH, Hanum H, Sabrina T. 2020. Exploration and effectiveness test of the potassium solvent bacteria originating from limestone mountain of Bahorok Langkat. Di dalam: IOP Conference Series: Earth and Environmental Science. Vol. 454. IOP Publishing. hlm. 012143.
Bedison JE, Johnson AH, Willig SA. 2010. A comparison of soil organic matter content in 1932, 1984, and 2005/6 in forests of the Adirondack Mountains, New York. Soil Science Society of America Journal. 74(2):658–662.
Brady NC, Weil RR, Weil RR. 2008. The nature and properties of soils. Volume ke-13. Prentice Hall Upper Saddle River, NJ.
Çali?kan B, Çali?kan AC. 2019. Potassium Nutrition in Plants and Its Interactions with Other Nutrients in Hydroponic Culture. Improvement of Quality in Fruits and Vegetables Through Hydroponic Nutrient Management.:9.
Dubus J, Leonhardt N, Latrille C. 2023. Multi-cation exchanges involved in cesium and potassium sorption mechanisms on vermiculite and micaceous structures. Environmental Science and Pollution Research. 30(1):1579–1594.
Eguchi T, Yamada D, Hirayama T, Kohata K, Kanno N, Nihei N, Hamamoto S, Kubo K, Saito T, Shinano T. 2023. Potassium buffering characteristics and detection of soils with challenges in evaluating radiocesium uptake risk of crops by exchangeable potassium. Arch Agron Soil Sci.:1–18.
Etesami H, Emami S, Alikhani HA. 2017. Potassium solubilizing bacteria (KSB):: Mechanisms, promotion of plant growth, and future prospects A review. J Soil Sci Plant Nutr. 17(4):897–911.
Guo X-Q, Gu J-Y, Yu Y-J, Zhang W-B, He L-Y, Sheng X-F. 2014. Paenibacillus susongensis sp. nov., a mineral-weathering bacterium. Int J Syst Evol Microbiol. 64(Pt_12):3958–3963.
Gupta M, Kiran S, Gulati A, Singh B, Tewari R. 2012. Isolation and identification of phosphate solubilizing bacteria able to enhance the growth and aloin-A biosynthesis of Aloe barbadensis Miller. Microbiol Res. 167(6):358–363.
Hernández DL, Mahia M, Meléndez W, Contreras AYL. 2021. Fijación de potasio y competencia con Amonio en un suelo con arcillas expansivas. Bioagro. 33(3):229–234.
Johnson AH, Moyer A, Bedison JE, Richter SL, Willig SA. 2008. Seven decades of calcium depletion in organic horizons of Adirondack forest soils. Soil Science Society of America Journal. 72(6):1824–1830.
Kome GK, Enang RK, Tabi FO, Yerima BPK. 2019. Influence of Clay Minerals on Some Soil Fertility Attributes: A Review. Open Journal of Soil Science. 9(9):155–188.
Liu DF, Lian B, Wang B. 2016. Solubilization of potassium containing minerals by high temperature resistant Streptomyces sp. isolated from earthworm’s gut. Acta Geochimica. 35(3):262–270.doi:10.1007/s11631-016-0106-6.
Marra LM, Oliveira SM de, Soares CRFS, Moreira FM de S. 2011. Solubilisation of inorganic phosphates by inoculant strains from tropical legumes. Sci Agric. 68:603–609.
Meena VS, Maurya BR, Verma JP. 2014. Does a rhizospheric microorganism enhance K+ availability in agricultural soils? Microbiol Res. 169(5–6):337–347.
Olaniyan FT, Alori ET, Adekiya AO, Ayorinde BB, Daramola FY, Osemwegie OO, Babalola OO. 2022. The use of soil microbial potassium solubilizers in potassium nutrient availability in soil and its dynamics. Ann Microbiol. 72(1):45.
Oliveira CA, Alves VMC, Marriel IE, Gomes EA, Scotti MR, Carneiro NP, Guimaraes CT, Schaffert RE, Sá NMH. 2009. Phosphate solubilizing microorganisms isolated from rhizosphere of maize cultivated in an oxisol of the Brazilian Cerrado Biome. Soil Biol Biochem. 41(9):1782–1787.
Ong KS, Aw YK, Lee LH, Yule CM, Cheow YL, Lee SM. 2016. Burkholderia paludis sp. nov., an antibiotic-siderophore producing novel Burkholderia cepacia complex species, isolated from Malaysian tropical peat swamp soil. Front Microbiol. 7:2046.
Palleroni NJ, Holmes B. 1981. Pseudomonas cepacia sp. nov., nom. rev. Int J Syst Evol Microbiol. 31(4):479–481.
Patel JB, Wallace RJ, Brown-Elliott BA, Taylor T, Imperatrice C, Leonard DGB, Wilson RW, Mann L, Jost KC, Nachamkin I. 2004. Sequence-based identification of aerobic actinomycetes. J Clin Microbiol. 42(6):2530–2540.
Pratama D, Anas I. 2016. Ability of potassium-solubilising microbes to solubilise feldspar and their effects on sorghum growth. Malaysian Journal of Soil Science. 20:163–175.
Roszak DB, Colwell R. 1987. Survival strategies of bacteria in the natural environment. Microbiol Rev. 51(3):365–379.
Saha M, Maurya BR, Meena VS, Bahadur I, Kumar A. 2016. Identification and characterization of potassium solubilizing bacteria (KSB) from Indo-Gangetic Plains of India. Biocatal Agric Biotechnol. 7:202–209.doi:10.1016/j.bcab.2016.06.007.
Salam AK, Sriyani N, Dewi SK, Utomo M. 2023. The soil available-potassium enrichment by several potential tropical weeds. Di dalam: AIP Conference Proceedings. Vol. 2583. AIP Publishing LLC. hlm. 020040.
Sarikhani MR, Oustan S, Ebrahimi M, Aliasgharzad N. 2018. Isolation and identification of potassium?releasing bacteria in soil and assessment of their ability to release potassium for plants. Eur J Soil Sci. 69(6):1078–1086.
Sattar A, Naveed M, Ali M, Zahir ZA, Nadeem SM, Yaseen M, Meena VS, Farooq M, Singh R, Rahman M. 2019. Perspectives of potassium solubilizing microbes in sustainable food production system: A review. Applied soil ecology. 133:146–159.
Schueler TA, Dourado ML, Videira SS, da Cunha CD, Rizzo ACL. 2021. Biosolubilization of verdete: an alternative potassium source for agriculture fertilizer. Biocatal Agric Biotechnol. 34:102031.
Serrazanetti DI, Guerzoni ME, Corsetti A, Vogel R. 2009. Metabolic impact and potential exploitation of the stress reactions in lactobacilli. Food Microbiol. 26(7):700–711.
Setiawati TC, Mutmainnah L. 2016. Solubilization of potassium containing mineral by microorganisms from sugarcane rhizosphere. Agriculture and Agricultural Science Procedia. 9:108–117.
Shakeri S. 2018. Effect of soil buffering capacity and clay minerals on the rate coefficient of non-exchangeable potassium release. Malaysian Journal of Soil Science. 22:59–75.
Sharma M, Delta AK, Dhanda PS, Kaushik P, Mohanta YK, Saravanan M, Mohanta TK. 2022. AMF and PSB applications modulated the biochemical and mineral content of the eggplants. J Basic Microbiol. 62(11):1371–1378.
Singh RK, Malik N, Singh S. 2013. Improved nutrient use efficiency increases plant growth of rice with the use of IAA-overproducing strains of endophytic Burkholderia cepacia strain RRE25. Microb Ecol. 66:375–384.
SOUMARE A, Djibril S, DIÉDHIOU AG. 2022. Potassium sources, microorganisms, and plant nutrition—challenges and future research directions: A review. Pedosphere.
Tamura K, Nei M. 1993. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol. 10(3):512–526.
Tamura K, Stecher G, Kumar S. 2021. MEGA11: molecular evolutionary genetics analysis version 11. Mol Biol Evol. 38(7):3022–3027.
Uroz S, Calvaruso C, Turpault M-P, Frey-Klett P. 2009. Mineral weathering by bacteria: ecology, actors and mechanisms. Trends Microbiol. 17(8):378–387.
Wakeel A. 2013. Potassium–sodium interactions in soil and plant under saline?sodic conditions. Journal of Plant Nutrition and Soil Science. 176(3):344–354.
Wang Y, Yan X, Su M, Li J, Man T, Wang S, Li C, Gao S, Zhang R, Zhang M. 2022. Isolation of potassium solubilizing bacteria in soil and preparation of liquid bacteria fertilizer from food wastewater. Biochem Eng J. 181:108378.
Weber DC, Skillings JH. 2018. A first Course in the Design of Experiments: A linear Models Approach. Routledge.
Xiao B, Lian B, Shao W. 2012. Do bacterial secreted proteins play a role in the weathering of potassium-bearing rock powder? Geomicrobiol J. 29(6):497–505.
Yabuuchi E, Kosako Y, Oyaizu H, Yano I, Hotta H, Hashimoto Y, Ezaki T, Arakawa M. 1992. Proposal of Burkholderia gen. nov. and transfer of seven species of the genus Pseudomonas homology group II to the new genus, with the type species Burkholderia cepacia (Palleroni and Holmes 1981) comb. nov. Microbiol Immunol. 36(12):1251–1275.
Young L-S, Hameed A, Peng S-Y, Shan Y-H, Wu S-P. 2013. Endophytic establishment of the soil isolate Burkholderia sp. CC-Al74 enhances growth and P-utilization rate in maize (Zea mays L.). Applied Soil Ecology. 66:40–47.
Zhang C, Kong F. 2014. Isolation and identification of potassium-solubilizing bacteria from tobacco rhizospheric soil and their effect on tobacco plants. Applied Soil Ecology. 82:18–25.doi:10.1016/j.apsoil.2014.05.002.
Zhao S-X, Deng Q-S, Jiang C-Y, Wu Q-S, Xue Y-B, Li G-L, Zhao J-J, Zhou N. 2022. Inoculation with Potassium Solubilizing Bacteria and Its Effect on the Medicinal Characteristics of Paris polyphylla var. yunnanensis. Agriculture. 13(1):21.
Zhou Z, Chang N, Lv Y, Jiang H, Yao C, Wan X, Li Y, Zhang X. 2022. K-solubilizing bacteria (Bacillus) promote theanine synthesis in tea roots (Camellia sinensis) by activating CsTSI activity. Tree Physiol. 42(8):1613–1627.