Assessment of the dynamic growth and potassium solubilization capability of three novel bacteria

##plugins.themes.bootstrap3.article.main##

IMAM HARTONO BANGUN
https://orcid.org/0000-0001-9977-664X
BUNGA RAYA KETAREN
ASRITANARNI MUNAR
https://orcid.org/0000-0002-1496-7170
PERDINANTA SEMBIRING
NURHAJIJAH
http://orcid.org/0009-0009-9328-8237
ANDRI ABDI
REYZA SUWANTO SITORUS

Abstract

Abstract. Bangun IH, Ketaren BR, Munar A, Sembiring P, Nurhajijah, Abdi A, Sitorus RS. 2024. Assessment of the dynamic growth and potassium solubilization capability of three novel bacteria. Biodiversitas 25: 177-185. Clay minerals are essential components that play a crucial role in soil cation exchangeable capacity and optimal plant growth. These components, including potassium (K), have the ability to bind with mineral crystals in the soil. Several studies have shown that K-solubilizing bacteria can facilitate the solubility of potassium, leading to optimal availability. However, the use of bacteria as biofertilizers is still limited due to challenges related to survival and growth patterns. To address these challenges, it is important to monitor the growth of the microbes and enhance their selection process to achieve effective utilization. Therefore, this study aimed to determine the bacterial growth dynamics and potential of Burkholderia paludis IHB_01, Burkholderia cepacia IHB_02, and Paraburkholderia phymatum IHB_03 in enhancing soil cation availability on clay minerals. The results showed a common initial adaptation phase among the 3 bacterial strains, followed by distinct exponential growth patterns. Burkholderia cepacia IHB_02 had the longest exponential growth phase, showing efficient resource utilization and extended growth. The results of soil cation enhancement by these bacteria showed that there were no major changes in measured parameters, such as total K, CEC, pH, and organic carbon. Furthermore, the variation in K exchange, organic carbon, and Na exchange provided insights into their unique interactions in the soil. The non-significant impact on potassium-related parameters in this study could be attributed to the presence of antagonistic cation interactions.

##plugins.themes.bootstrap3.article.details##

References
Adhikari K, Hartemink AE. 2016. Linking soils to ecosystem services—A global review. Geoderma. 262:101–111.
Bangun IH, Hanum H, Sabrina T. 2020. Exploration and effectiveness test of the potassium solvent bacteria originating from limestone mountain of Bahorok Langkat. IOP Conference Series: Earth and Environmental Science. 454(1):012143.doi:10.1088/1755-1315/454/1/012143.
Bangun IH, Hanum H, Sabrina T. 2023. Isolation and molecular characterization of potassium-solubilizing bacteria from limestone mountain of Bahorok, Langkat District, Indonesia. Biodiversitas Journal of Biological Diversity. 24(7).
Barré P, Velde B, Fontaine C, Catel N, Abbadie L. 2008. Which 2: 1 clay minerals are involved in the soil potassium reservoir? Insights from potassium addition or removal experiments on three temperate grassland soil clay assemblages. Geoderma. 146(1–2):216–223.
Berney Michael, Weilenmann Hans-Ulrich, Ihssen Julian, Bassin Claudio, Egli Thomas. 2006. Specific Growth Rate Determines the Sensitivity of Escherichia coli to Thermal, UVA, and Solar Disinfection. Applied and Environmental Microbiology. 72(4):2586–2593.doi:10.1128/AEM.72.4.2586-2593.2006.
Bertrand Robert L. 2019. Lag Phase Is a Dynamic, Organized, Adaptive, and Evolvable Period That Prepares Bacteria for Cell Division. Journal of Bacteriology. 201(7):10.1128/jb.00697-18.doi:10.1128/jb.00697-18.
Bhunia S, Bhowmik A, Mallick R, Mukherjee J. 2021. Agronomic efficiency of animal-derived organic fertilizers and their effects on biology and fertility of soil: A review. Agronomy. 11(5):823.
Cai-xia L, Jing-jing Z, Ru-zhen J. 2018. Studies on the Growth Characteristics of Nitrogen-fixing Bacterium in Soil of Cunninghamia lanceolata Forest. ??????. 31(4):98–103.
Chacón JM, Shaw AK, Harcombe WR. 2020. Increasing growth rate slows adaptation when genotypes compete for diffusing resources. PLOS Computational Biology. 16(1):e1007585.doi:10.1371/journal.pcbi.1007585.
Chen W, Hu H, Heal K, Sohi S, Tigabu M, Qiu W, Zhou C. 2023. Linking Microbial Decomposition to Dissolved Organic Matter Composition in the Revegetation of the Red Soil Erosion Area. Forests. 14(2).doi:10.3390/f14020270.
Compant S, Nowak J, Coenye T, Clement C, Ait Barka E. 2008. Diversity and occurrence of Burkholderia spp. in the natural environment. FEMS microbiology reviews. 32(4):607–626.
Elshafie HS, Camele I. 2021. An overview of metabolic activity, beneficial and pathogenic aspects of Burkholderia Spp. Metabolites. 11(5):321.
Endo T, Yamamoto S, Honna T, Eneji AE. 2002. Sodium-calcium exchange selectivity as influenced by clay minerals and composition. Soil Science. 167(2).
Falk Øgaard A, Krogstad T. 2005. Release of interlayer potassium in Norwegian grassland soils. Journal of Plant Nutrition and Soil Science. 168(1):80–88.
Ghosh R, Barman S, Mukherjee R, Mandal NC. 2016. Role of phosphate solubilizing Burkholderia spp. for successful colonization and growth promotion of Lycopodium cernuum L.(Lycopodiaceae) in lateritic belt of Birbhum district of West Bengal, India. Microbiological Research. 183:80–91.
Gonzalez JM, Aranda B. 2023. Microbial Growth under Limiting Conditions-Future Perspectives. Microorganisms. 11(7).doi:10.3390/microorganisms11071641.
Gougoulias C, Clark JM, Shaw LJ. 2014. The role of soil microbes in the global carbon cycle: tracking the below-ground microbial processing of plant-derived carbon for manipulating carbon dynamics in agricultural systems. Journal of the Science of Food and Agriculture. 94(12):2362–2371.doi:10.1002/jsfa.6577.
He J-Z, Zheng Y, Chen C-R, He Y-Q, Zhang L-M. 2008. Microbial composition and diversity of an upland red soil under long-term fertilization treatments as revealed by culture-dependent and culture-independent approaches. Journal of Soils and Sediments. 8:349–358.
Hinsinger P, Jaillard B, Dufey JE. 1992. Rapid weathering of a trioctahedral mica by the roots of ryegrass. Soil Science Society of America Journal. 56(3):977–982.
Ibrahim S, Abdul Khalil K, Zahri KNM, Gomez-Fuentes C, Convey P, Zulkharnain A, Sabri S, Alias SA, González-Rocha G, Ahmad SA. 2020. Biosurfactant production and growth kinetics studies of the waste canola oil-degrading bacterium Rhodococcus erythropolis AQ5-07 from Antarctica. Molecules. 25(17):3878.
Ihssen J, Egli T. 2004. Specific growth rate and not cell density controls the general stress response in Escherichia coli. Microbiology. 150(6):1637–1648.doi:https://doi.org/10.1099/mic.0.26849-0.
Klumpp S, Zhang Z, Hwa T. 2009. Growth Rate-Dependent Global Effects on Gene Expression in Bacteria. Cell. 139(7):1366–1375.doi:10.1016/j.cell.2009.12.001.
Maier RM, Pepper IL. 2015. Bacterial growth. Di dalam: Environmental microbiology. Elsevier. hlm. 37–56.
Maranguit D, Guillaume T, Kuzyakov Y. 2017. Land-use change affects phosphorus fractions in highly weathered tropical soils. Catena. 149:385–393.
Marciano Marra L, Fonsêca Sousa Soares CR, de Oliveira SM, Avelar Ferreira PA, Lima Soares B, de Fráguas Carvalho R, de Lima JM, de Souza Moreira FM. 2012. Biological nitrogen fixation and phosphate solubilization by bacteria isolated from tropical soils. Plant and soil. 357:289–307.
Meena VS, Maurya BR, Verma JP, Aeron A, Kumar A, Kim K, Bajpai VK. 2015. Potassium solubilizing rhizobacteria (KSR): Isolation, identification, and K-release dynamics from waste mica. Ecological Engineering. 81:340–347.doi:10.1016/j.ecoleng.2015.04.065.
Moulin L, Klonowska A, Caroline B, Booth K, Vriezen JA, Melkonian R, James EK, Young JPW, Bena G, Hauser L. 2014. Complete Genome sequence of Burkholderia phymatum STM815 T, a broad host range and efficient nitrogen-fixing symbiont of Mimosa species. Standards in Genomic Sciences. 9:763–774.
Officer S, Tillman R, Palmer A, Whitton J. 2006. Variability of clay mineralogy in two New Zealand steep-land topsoils under pasture. Geoderma. 132(3–4):427–440.
Olaniyan FT, Alori ET, Adekiya AO, Ayorinde BB, Daramola FY, Osemwegie OO, Babalola OO. 2022. The use of soil microbial potassium solubilizers in potassium nutrient availability in soil and its dynamics. Annals of Microbiology. 72(1):45.doi:10.1186/s13213-022-01701-8.
Ong KS, Cheow YL, Lee SM. 2017. The role of reactive oxygen species in the antimicrobial activity of pyochelin. Journal of advanced research. 8(4):393–398.
Qaswar M, Jing H, Ahmed W, Dongchu L, Shujun L, Lu Z, Cai A, Lisheng L, Yongmei X, Jusheng G. 2020. Yield sustainability, soil organic carbon sequestration and nutrients balance under long-term combined application of manure and inorganic fertilizers in acidic paddy soil. Soil and Tillage Research. 198:104569.
Rolfe Matthew D., Rice Christopher J., Lucchini Sacha, Pin Carmen, Thompson Arthur, Cameron Andrew D. S., Alston Mark, Stringer Michael F., Betts Roy P., Baranyi József, et al. 2012. Lag Phase Is a Distinct Growth Phase That Prepares Bacteria for Exponential Growth and Involves Transient Metal Accumulation. Journal of Bacteriology. 194(3):686–701.doi:10.1128/jb.06112-11.
Scherer H, Feils E, Beuters P. 2014. Ammonium fixation and release by clay minerals as influenced by potassium. Plant, Soil and Environment. 60(7):325–331.
Schuurmans RM, Matthijs JCP, Hellingwerf KJ. 2017. Transition from exponential to linear photoautotrophic growth changes the physiology of Synechocystis sp. PCC 6803. Photosynthesis Research. 132(1):69–82.doi:10.1007/s11120-016-0329-8.
Shakeri S, Abtahi A. 2019. Potassium fixation capacity of some highly calcareous soils as a function of clay minerals and alternately wetting-drying. Archives of Agronomy and Soil Science.
Sood S, Singhal R, Bhat S, Kumar A. 2011. 2.13 - Inoculum Preparation. Di dalam: Moo-Young M, editor. Comprehensive Biotechnology (Second Edition). Burlington. Burlington: Academic Press. hlm. 151–164.
SOUMARE A, SARR D, DIÉDHIOU AG. 2023. Potassium sources, microorganisms and plant nutrition: Challenges and future research directions. Pedosphere. 33(1):105–115.doi:10.1016/j.pedsph.2022.06.025.
Sparks DL, Singh B, Siebecker MG. 2024. Chapter 6 - Ion Exchange Processes. Di dalam: Sparks DL, Singh B, Siebecker MG, editor. Environmental Soil Chemistry (Third Edition). Boston. Boston: Academic Press. hlm. 283–304.
Stanbury PF, Whitaker A, Hall SJ. 2017. Chapter 2 - Microbial growth kinetics. Di dalam: Stanbury PF, Whitaker A, Hall SJ, editor. Principles of Fermentation Technology (Third Edition). Oxford. Oxford: Butterworth-Heinemann. hlm. 21–74.
Tan Y, Bond WJ, Rovira AD, Brisbane PG, Griffin DM. 1991. Movement through soil of a biological control agent, Pseudomonas fluorescens. Soil Biology and Biochemistry. 23(9):821–825.doi:10.1016/0038-0717(91)90092-X.
Tapia-García EY, Hernández-Trejo V, Guevara-Luna J, Rojas-Rojas FU, Arroyo-Herrera I, Meza-Radilla G, Vásquez-Murrieta MS, Estrada-de Los Santos P. 2020. Plant growth-promoting bacteria isolated from wild legume nodules and nodules of Phaseolus vulgaris L. trap plants in central and southern Mexico. Microbiological Research. 239:126522.
Vandamme P, Goris J, Chen W-M, De Vos P, Willems A. 2002. Burkholderia tuberum sp. nov. and Burkholderia phymatum sp. nov., nodulate the roots of tropical legumes. Systematic and applied microbiology. 25(4):507–512.
Wakeel A. 2013. Potassium–sodium interactions in soil and plant under saline-sodic conditions. Journal of Plant Nutrition and Soil Science. 176(3):344–354.doi:10.1002/jpln.201200417.
Wang M, Zheng Q, Shen Q, Guo S. 2013. The critical role of potassium in plant stress response. International journal of molecular sciences. 14(4):7370–7390.
Westerman RL. 1991. Soil Testing and Plant Analysis, Third Edition. Soil Science. 152(2).
Wilhelm RC, DeRito CM, Shapleigh JP, Madsen EL, Buckley DH. 2021. Phenolic acid-degrading Paraburkholderia prime decomposition in forest soil. ISME Communications. 1(1):4.doi:10.1038/s43705-021-00009-z.
Zahri KNM, Zulkharnain A, Ibrahim S, Gomez-Fuentes C, Sabri S, Calisto-Ulloa N, Ahmad SA. 2020. Kinetic analysis on the effects of lead (Pb) and silver (Ag) on waste canola oil (WCO) biodegradation by selected Antarctic microbial consortium. Malaysian Journal of Biochemistry and Molecular Biology. 23(1):20–23.
Zakaria NN, Roslee AFA, Zulkharnain A, Gomez-Fuentes C, Abdulrasheed M, Sabri S, Calisto-Ulloa N, Ahmad SA. 2019. Bacterial growth and diesel biodegradation in the presence of As, Cu and Pb by Antarctic marine bacteria. Malaysian Journal of Biochemistry and Molecular Biology. 22(3):8–15.
Zhang C, Kong F. 2014. Isolation and identification of potassium-solubilizing bacteria from tobacco rhizospheric soil and their effect on tobacco plants. Applied soil ecology. 82:18–25.
Zhao K, Penttinen P, Zhang X, Ao X, Liu M, Yu X, Chen Q. 2014. Maize rhizosphere in Sichuan, China, hosts plant growth promoting Burkholderia cepacia with phosphate solubilizing and antifungal abilities. Microbiological Research. 169(1):76–82.