eDNA assessment of scleractinian diversity and distribution in Lemukutan Island, Indonesia

##plugins.themes.bootstrap3.article.main##

IWAN KUNCORO
NEVIATY PUTRI ZAMANI
BEGINER SUBHAN
NI KADEK DITA CAHYANI

Abstract

Abstract. Kuncoro I, Zamani NP, Subhan B, Cahyani NKD. 2023. eDNA assessment of scleractinian diversity and distribution in Lemukutan Island, Indonesia. Biodiversitas 24: 4185-4191. Coral reefs are one of the most degraded and endangered tropical marine ecosystems. The study of biodiversity and its distribution is significant for biomonitoring. Lemukutan is an island that has a coral reef ecosystem with high biodiversity. This study aims to examine the biodiversity of coral species on Lemukutan Island using the Environmental DNA (eDNA) approach to survey scleractinian diversity across Lemukutan Island. Surface seawater samples were taken from five sites. eDNA sample extracted from the filter paper used for filtration Polymerase Chain Reaction (PCR) amplification was performed with Internal Transcribed Spacer (ITS2) primers, and Next Generation Sequencing was used to examine the results. The result found 2,413 Amplicon Sequence Variance (ASVs) and 275,000 reads from seawater samples from 5 sites. 87 ASVs from the eukaryotic group (146,378 reads) and 1,926 ASVs from unidentified taxa (128,622 reads) were identified. The highest phylum of eukaryotic taxa obtained was Phylum Cnidaria, with 332 ASVs (72% of the total eukaryotic ASVs) and 77,428 reads (85% of the total eukaryotic reads). There are 43 species of eukaryotes, including the Cnidaria group-based eDNA. The results show 14 species of scleractinian and different species compositions from each sampling location. In conclusion, the eDNA method has sensitive results in detecting 14 scleractinian species composition without destroying habitats and organisms. Knowledge regarding species diversity and distribution of taxa with eDNA assessment can be used as a reference in monitoring coral reef ecosystems on Lemukutan Island, Indonesia.

##plugins.themes.bootstrap3.article.details##

References
Alexander, J. B., Bunce, M., White, N., Wilkinson, S. P., Adam, A. A. S., Berry, T., Stat, M., Thomas, L., Newman, S. J., Dugal, L., & Richards, Z. T. (2020). Development of a multi-assay approach for monitoring coral diversity using eDNA metabarcoding. Coral Reefs, 39(1), 159–171. https://doi.org/10.1007/s00338-019-01875-9
Andruszkiewicz, E. A., Starks, H. A., Chavez, F. P., Sassoubre, L. M., Block, B. A., & Boehm, A. B. (2017). Biomonitoring of marine vertebrates in Monterey Bay using eDNA metabarcoding. PLoS ONE, 12(4), 1–20. https://doi.org/10.1371/journal.pone.0176343
Anton, A., Geraldi, N. R., Lovelock, C. E., Apostolaki, E. T., Bennett, S., Cebrian, J., Krause-Jensen, D., Marbà, N., Martinetto, P., Pandolfi, J. M., Santana-Garcon, J., & Duarte, C. M. (2019). Global ecological impacts of marine exotic species. Nature Ecology and Evolution, 3(5), 787–800. https://doi.org/10.1038/s41559-019-0851-0
Benkwitt, C. E., Wilson, S. K., & Graham, N. A. J. (2020). Biodiversity increases ecosystem functions despite multiple stressors on coral reefs. Nature Ecology and Evolution, 4(7), 919–926. https://doi.org/10.1038/s41559-020-1203-9
Boussarie, G., Bakker, J., Wangensteen, O. S., Mariani, S., Bonnin, L., Juhel, J. B., Kiszka, J. J., Kulbicki, M., Manel, S., Robbins, W. D., Vigliola, L., & Mouillot, D. (2018). Environmental DNA illuminates the dark diversity of sharks. Science Advances, 4(5). https://doi.org/10.1126/sciadv.aap9661
Bright, A. J., Cameron, C. M., & Miller, M. W. (2015). Enhanced susceptibility to predation in corals of compromised condition. PeerJ, 2015(9), 1–12. https://doi.org/10.7717/peerj.1239
Burke, L., Selig, E., & Spalding, M. (2002). Reefs at Risk in Southeast Asia. In World Fishing. http://www.citeulike.org/group/342/article/484868
Ceballos, G., Ehrlich, P. R., & Dirzo, R. (2017). Biological annihilation via the ongoing sixth mass extinction signaled by vertebrate population losses and declines. Proceedings of the National Academy of Sciences of the United States of America, 114(30), E6089–E6096. https://doi.org/10.1073/pnas.1704949114
Cowart, D. A., Murphy, K. R., & Cheng, C. H. C. (2018). Metagenomic sequencing of environmental DNA reveals marine faunal assemblages from the West Antarctic Peninsula. Marine Genomics, 37(October), 148–160. https://doi.org/10.1016/j.margen.2017.11.003
Deiner, K., Bik, H. M., Mächler, E., Seymour, M., Lacoursière-Roussel, A., Altermatt, F., Creer, S., Bista, I., Lodge, D. M., de Vere, N., Pfrender, M. E., & Bernatchez, L. (2017). Environmental DNA metabarcoding: Transforming how we survey animal and plant communities. Molecular Ecology, 26(21), 5872–5895. https://doi.org/10.1111/mec.14350
Dejean, T., Valentini, A., Duparc, A., Pellier-Cuit, S., Pompanon, F., Taberlet, P., & Miaud, C. (2011). Persistence of environmental DNA in freshwater ecosystems. PLoS ONE, 6(8), 8–11. https://doi.org/10.1371/journal.pone.0023398
Dugal, L., Thomas, L., Meenakshisundaram, A., Simpson, T., Lines, R., Colquhoun, J., Jarman, S., & Meekan, M. (2022). Distinct coral reef habitat communities characterized by environmental DNA metabarcoding. Coral Reefs, 42(1), 17–30. https://doi.org/10.1007/s00338-022-02301-3
Fahrezi, F. Y., Bakhri, E. N. A., Verawati, I., Sani, L. M. I., Environmental, O., Laboklinikum, B., Subhan, B., Zamani, N. P., & Madduppa, H. (2021). Environmental DNA biomonitoring revealed species diversity of Cnidarian and Poriferan across Jakarta Bay and Seribu Islands National Park. Research Square, 2021, 1167046. https://doi.org/10.21203/rs.3.rs-1167046/v1
Foale, S., Adhuri, D., Aliño, P., Allison, E. H., Andrew, N., Cohen, P., Evans, L., Fabinyi, M., Fidelman, P., Gregory, C., Stacey, N., Tanzer, J., & Weeratunge, N. (2013). Food security and the Coral Triangle Initiative. Marine Policy, 38, 174–183. https://doi.org/10.1016/j.marpol.2012.05.033
Fraija-Fernández, N., Bouquieaux, M. C., Rey, A., Mendibil, I., Cotano, U., Irigoien, X., Santos, M., & Rodríguez-Ezpeleta, N. (2020). Marine water environmental DNA metabarcoding provides a comprehensive fish diversity assessment and reveals spatial patterns in a large oceanic area. Ecology and Evolution, 10(14), 7560–7584. https://doi.org/10.1002/ece3.6482
Garlapati, D., Charankumar, B., Ramu, K., Madeswaran, P., & Ramana Murthy, M. V. (2019). A review on the applications and recent advances in environmental DNA (eDNA) metagenomics. Reviews in Environmental Science and Biotechnology, 18(3), 389–411. https://doi.org/10.1007/s11157-019-09501-4
Goldberg, C. S., Turner, C. R., Deiner, K., Klymus, K. E., Thomsen, P. F., Murphy, M. A., Spear, S. F., McKee, A., Oyler-McCance, S. J., Cornman, R. S., Laramie, M. B., Mahon, A. R., Lance, R. F., Pilliod, D. S., Strickler, K. M., Waits, L. P., Fremier, A. K., Takahara, T., Herder, J. E., & Taberlet, P. (2016). Critical considerations for the application of environmental DNA methods to detect aquatic species. Methods in Ecology and Evolution, 7(11), 1299–1307. https://doi.org/10.1111/2041-210X.12595
Guardiola, M., Uriz, M. J., Taberlet, P., Coissac, E., Wangensteen, O. S., & Turon, X. (2015). Deep-sea, deep-sequencing: Metabarcoding extracellular DNA from sediments of marine canyons. PLoS ONE, 10(10). https://doi.org/10.1371/journal.pone.0139633
Halpern, B. S., Walbridge, S., Selkoe, K. A., Kappel, C. V., Micheli, F., D’Agrosa, C., Bruno, J. F., Casey, K. S., Ebert, C., Fox, H. E., Fujita, R., Heinemann, D., Lenihan, H. S., Madin, E. M. P., Perry, M. T., Selig, E. R., Spalding, M., Steneck, R., & Watson, R. (2008). GlobalMapImpactMarineHalpernetal2008. Science, 319(February), 948–952.
Harrison, J. B., Sunday, J. M., & Rogers, S. M. (2019). Predicting the fate of eDNA in the environment and implications for studying biodiversity. Proceedings of the Royal Society B: Biological Sciences, 286(1915). https://doi.org/10.1098/rspb.2019.1409
Holman, L. E., de Bruyn, M., Creer, S., Carvalho, G., Robidart, J., & Rius, M. (2019). Detection of introduced and resident marine species using environmental DNA metabarcoding of sediment and water. Scientific Reports, 9(1), 1–10. https://doi.org/10.1038/s41598-019-47899-7
Jackson, J. B. C., Kirby, M. X., Berger, W. H., Bjorndal, K. A., Botsford, L. W., Bourque, B. J., Bradbury, R. H., Cooke, R., Erlandson, J., Estes, J. A., Hughes, T. P., Kidwell, S., Lange, C. B., Lenihan, H. S., Pandolfi, J. M., Peterson, C. H., Steneck, R. S., Tegner, M. J., & Warner, R. R. (2001). Historical overfishing and the recent collapse of coastal ecosystems. Science, 293(5530), 629–637. https://doi.org/10.1126/science.1059199
Kelly, R. P., Closek, C. J., O’Donnell, J. L., Kralj, J. E., Shelton, A. O., & Samhouri, J. F. (2017). Genetic and manual survey methods yield different and complementary views of an ecosystem. Frontiers in Marine Science, 3(JAN), 1–11. https://doi.org/10.3389/FMARS.2016.00283
Kelly, R. P., Port, J. A., Yamahara, K. M., & Crowder, L. B. (2014). Using environmental DNA to census marine fishes in a large mesocosm. PLoS ONE, 9(1). https://doi.org/10.1371/journal.pone.0086175
Kent E. Carpenter, M. A., Aeby, G., Aronson, R. B., Banks, S., Bruckner, A., Chiriboga, A., Cortés, J., Delbee, J. C., DeVantier, L., Edgar, G. J., Edwards, A. J., Fenner, D., Guzmán, H. M., & Hoeksema, B. W. (2008). One-Third of Reef-Building Corals Face Elevated Extinction Risk from Climate Change and Local Impacts. Science, July, 560–563.
Leduc, N., Lacoursière-Roussel, A., Howland, K. L., Archambault, P., Sevellec, M., Normandeau, E., Dispas, A., Winkler, G., McKindsey, C. W., Simard, N., & Bernatchez, L. (2019). Comparing eDNA metabarcoding and species collection for documenting Arctic metazoan biodiversity. Environmental DNA, 1(4), 342–358. https://doi.org/10.1002/edn3.35
Madduppa, H., Cahyani, N. K. D., Anggoro, A. W., Subhan, B., Jefri, E., Sani, L. M. I., Arafat, D., Akbar, N., & Bengen, D. G. (2021). eDNA metabarcoding illuminates species diversity and composition of three phyla (chordata, mollusca and echinodermata) across Indonesian coral reefs. Biodiversity and Conservation, 0123456789. https://doi.org/10.1007/s10531-021-02237-0
Marwayana, O. N., Gold, Z., Meyer, C. P., & Barber, P. H. (2022). Environmental DNA in a global biodiversity hotspot: Lessons from coral reef fish diversity across the Indonesian archipelago. Environmental DNA, 4(1), 222–238. https://doi.org/10.1002/edn3.257
McGill, B. J., Dornelas, M., Gotelli, N. J., & Magurran, A. E. (2015). Fifteen forms of biodiversity trend in the anthropocene. Trends in Ecology and Evolution, 30(2), 104–113. https://doi.org/10.1016/j.tree.2014.11.006
McMurdie, P. J., & Holmes, S. (2014). Waste Not, Want Not: Why Rarefying Microbiome Data Is Inadmissible. PLoS Computational Biology, 10(4). https://doi.org/10.1371/journal.pcbi.1003531
Miya, M., Sato, Y., Fukunaga, T., Sado, T., Poulsen, J. Y., Sato, K., Minamoto, T., Yamamoto, S., Yamanaka, H., Araki, H., Kondoh, M., & Iwasaki, W. (2015). MiFish, a set of universal PCR primers for metabarcoding environmental DNA from fishes: Detection of more than 230 subtropical marine species. Royal Society Open Science, 2(7). https://doi.org/10.1098/rsos.150088
Pompanon, F., Deagle, B. E., Symondson, W. O. C., Brown, D. S., Jarman, S. N., & Taberlet, P. (2012). Who is eating what: Diet assessment using next generation sequencing. Molecular Ecology, 21(8), 1931–1950. https://doi.org/10.1111/j.1365-294X.2011.05403.x
Pukk, L., Kanefsky, J., Heathman, A. L., Weise, E. M., Nathan, L. R., Herbst, S. J., Sard, N. M., Scribner, K. T., & Robinson, J. D. (2021). eDNA metabarcoding in lakes to quantify influences of landscape features and human activity on aquatic invasive species prevalence and fish community diversity. Diversity and Distributions, 27(10), 2016–2031. https://doi.org/10.1111/ddi.13370
Richards, Z. T., & Day, J. C. (2018). Biodiversity of the Great Barrier Reef- how adequately is it protected? PeerJ, 2018(5), 1–26. https://doi.org/10.7717/peerj.4747
Roberts, C. M., McClean, C. J., Veron, J. E. N., Hawkins, J. P., Allen, G. R., McAllister, D. E., Mittermeier, C. G., Schueler, F. W., Spalding, M., Wells, F., Vynne, C., & Werner, T. B. (2002). Marine biodiversity hotspots and conservation priorities for tropical reefs. Science, 295(5558), 1280–1284. https://doi.org/10.1126/science.1067728
Sani, L. M. I., Husna, A. K., Subhan, B., & Madduppa, H. (2021). Environmental DNA (eDNA) reveals endangered narrow sawfish across Indonesian Reefs. IOP Conference Series: Earth and Environmental Science, 944(1). https://doi.org/10.1088/1755-1315/944/1/012020
Strickler, K. M., Fremier, A. K., & Goldberg, C. S. (2015). Quantifying effects of UV-B, temperature, and pH on eDNA degradation in aquatic microcosms. Biological Conservation, 183, 85–92. https://doi.org/10.1016/j.biocon.2014.11.038
Suter, L., Polanowski, A. M., Clarke, L. J., Kitchener, J. A., & Deagle, B. E. (2021). Capturing open ocean biodiversity: Comparing environmental DNA metabarcoding to the continuous plankton recorder. Molecular Ecology, 30(13), 3140–3157. https://doi.org/10.1111/mec.15587
Thomsen, P. F., Kielgast, J., Iversen, L. L., Møller, P. R., Rasmussen, M., & Willerslev, E. (2012). Detection of a Diverse Marine Fish Fauna Using Environmental DNA from Seawater Samples. PLoS ONE, 7(8), 1–9. https://doi.org/10.1371/journal.pone.0041732
Turner, C. R., Uy, K. L., & Everhart, R. C. (2015). Fish environmental DNA is more concentrated in aquatic sediments than surface water. Biological Conservation, 183, 93–102. https://doi.org/10.1016/j.biocon.2014.11.017
Veron, J. (2009). Veron 2009. 91–100.
Visconti, P., Bakkenes, M., Baisero, D., Brooks, T., Butchart, S. H. M., Joppa, L., Alkemade, R., Di Marco, M., Santini, L., Hoffmann, M., Maiorano, L., Pressey, R. L., Arponen, A., Boitani, L., Reside, A. E., van Vuuren, D. P., & Rondinini, C. (2016). Projecting Global Biodiversity Indicators under Future Development Scenarios. Conservation Letters, 9(1), 5–13. https://doi.org/10.1111/conl.12159
Welsh, J. Q., Bonaldo, R. M., & Bellwood, D. R. (2015). Clustered parrotfish feeding scars trigger partial coral mortality of massive Porites colonies on the inshore Great Barrier Reef. Coral Reefs, 34(1), 81–86. https://doi.org/10.1007/s00338-014-1224-4
Zinger, L., Bonin, A., Alsos, I. G., Bálint, M., Bik, H., Boyer, F., Chariton, A. A., Creer, S., Coissac, E., Deagle, B. E., De Barba, M., Dickie, I. A., Dumbrell, A. J., Ficetola, G. F., Fierer, N., Fumagalli, L., Gilbert, M. T. P., Jarman, S., Jumpponen, A., … Taberlet, P. (2019). DNA metabarcoding—Need for robust experimental designs to draw sound ecological conclusions. Molecular Ecology, 28(8), 1857–1862. https://doi.org/10.1111/mec.15060

Most read articles by the same author(s)

1 2 > >>