Response diversity and traits related to pepper yellow leaf curl disease resilience for resistant plants selection

##plugins.themes.bootstrap3.article.main##

TRI WAHONO DYAH AYU SAYEKTI
MUHAMAD SYUKUR
SRI HENDRASTUTI HIDAYAT
AWANG MAHARIJAYA
SOBIR

Abstract

Abstract. Sayekti TWDA, Syukur M, Hidayat SH, Maharijaya A, Sobir. 2023. Response diversity and traits related to pepper yellow leaf curl disease resilience for resistant plants selection. Biodiversitas 24: 5057-5064. Many chili species (Capsicum spp.) have been used and consumed, among them five species, namely Capsicum annuum, C. frutescens, C. chinense, C. baccatum and C. pubescens, are widely used. Most of these varieties are susceptible to Pepper Yellow Leaf Curl Disease (PYLCD) caused by Pepper yellow leaf curl virus (PYLCV) (Begomovirus, Geminiviridae). To control PYLCD, it is essential to gather resistant plant varieties to effectively shield cultivated plants from viral infections. An effective selection activity related to the target character is needed to get highly productive resistant plants. The objective of this study was to evaluate the relationship between resistance characters to crop production and to obtain appropriate selection criteria to increase the effectiveness of selecting resistant plants with good production. This study was conducted at Cikabayan Field, IPB University, Bogor, Indonesia. Twenty-nine genotypes of chili pepper were used, which consists of four species, including C. annuum, C. frutescens, C. chinense, and C. baccatum, arranged in a nested block design with three replications. The observed symptoms were yellowing of leaves followed by leaf malformations, but there were differences in the yellowing symptoms. From observation on visual symptoms, resistance characteristics, plant performance and productivity, there were differences in the response of each species to PYLCV attack. Correlation and path analysis results show that there was also differences in performance drop between C. annuum species and the non-C. annuum group. In C. frutescens, C. chinense, and C. baccatum, direct selection on resistance characters was able to increase the resistance level of selected plants while maintaining good crop production. Whereas for C.  annuum species, the plant resistance level was not correlate with productivity reduction, so in the selection process, the percentage of yield decline needs to be considered to obtain resistant plants and maintain crop production.

##plugins.themes.bootstrap3.article.details##

References
Ashfaq MA, Dinesh Kumar V, Soma Sekhar Reddy P, Anil Kumar C, Sai Kumar K, Narasimha Rao N, Tarakeswari M, Sujatha M. 2020. Post-transcriptional gene silencing: Basic concepts and applications. J Biosci 45(1). DOI:10.1007/s12038-020-00098-3.
Barchenger DW, Yule S, Lin S, Wang Y, Lin T, Chan Y, Kenyon L. 2019. A Novel Source of Resistance to pepper yellow leaf curl thailand virus in chile pepper. HortScience 54(12):2146–2149. DOI:10.21273/HORTSCI14484-19.
Ber R, Navot N, Zamir D, Antignus Y, Cohen S, Czosnek H. 1990. Infection of tomato by the tomato yellow leaf curl virus: susceptibility to infection, symptom development, and accumulation of viral DNA. Arch Virol 112(3–4):169–180. DOI:10.1007/BF01323162.
Bicikliski O, Tashev K, Trajkova F, Mihajlov L, Gudeva LK. 2017. Comparative analysis of capsaicin content in peppers ( Capsicum annuum L .) grown in conventional and organic agricultural systems. J Agric Plant Sci 15(1):27–36.
Chen W, Zhang X, Fan Y, Li B, Ryabov E, Shi N, Zhao M, Yu Z, Qin C, Zheng Q, et al. 2018. A genetic network for systemic RNA silencing in plants. Plant Physiol 176(4):2700–2719. DOI:10.1104/pp.17.01828.
Dai K, Tsai Y, Wu C, Lai Y, Lin N, Hu C. 2022. Identification of crucial amino acids in begomovirus C4 curling symptoms. Viruses. 14:499–513. DOI:10.3390/v14030499.
Dombrovsky A, Glanz E, Pearlsman M, Lachman O, Antignus Y. 2010. Characterization of Pepper yellow leaf curl virus, a tentative new Polerovirus species causing a yellowing disease of pepper. Phytoparasitica 38(5):477–486. DOI:10.1007/s12600-010-0120-x.
Ganefianti DW. 2010. Genetic Resistance on Chilli Pepper to Yellow leaf curl Begomovirus and Strategy Breeding. [Dissertation].Institut Pertanian Bogor, Bogor. [Indonesian].
García-Neria MA, Rivera-Bustamante RF. 2011. Characterization of geminivirus resistance in an accession of Capsicum chinense Jacq. Mol Plant-Microbe Interact 24(2):172–182. DOI:10.1094/MPMI-06-10-0126.
Gaswanto R, Syukur M, Hidayat SH, Gunaeni N. 2016. Symptom and host range identification of six chilli begomovirus isolate in Indonesia. J Hortik 26(2):223–234. [Indonesian}
Hafsah S, Berliana P, Nura N, Ekasari R, Firdaus F. 2023. Estimation of genetic parameters for IPB genotype chilli (Capsicum annuum L.) resistant to begomovirus in Aceh; Proceedings of IOP Conference Series: Earth and Environmental Science. 1183. 012032.
IPGRI, AVRDC, CATIE. 1995. Descriptors for Capsicum (Capsicum spp.). International Plant Genetic Resources Institut, Rome.
Izge AU, Garba YM, Sodangi IA. 2012. Correlation and path coefficient analysis of tomato (Lycopersicon lycopersicum L. Karst) under fruit worm (Heliothis Zea Buddie) infestation in a line× tester. J Environ Issues Agric Dev Ctries 4(1):24–30.
Koeda S, Nagano AJ, Mori N, Watanabe C, Shiragane H, Horiuchi R. 2022. PepYLCIV and PepYLCAV resistance gene Pepy-2 encodes DFDGD-Class RNA-dependent RNA polymerase in Capsicum. Theor Appl Genet 135(7):2437–2452. DOI:10.21203/rs.3.rs-1396048/v1.
Koeda S, Onouchi M, Mori N, Pohan NS, Nagano AJ, Kesumawati E. 2021. A recessive gene pepy-1 encoding Pelota confers resistance to begomovirus isolates of PepYLCIV and PepYLCAV in Capsicum annuum. Theor Appl Genet 134(9):2947–2964. DOI:10.1007/s00122-021-03870-7.
Kumar D, Kumar R, Kumar S, Dogra BS, Vikram A, Thakur A, Kumar P. 2013. Genetic Variability, correlation and path coefficient analysis in tomato. Int J Veg Sci 19(4):37–41. DOI:10.1080/19315260.2012.726701.
Lapidot M, Friedmann M, Pilowsky M, Ben-Joseph R, Cohen S. 2001. Effect of host plant resistance to Tomato yellow leaf curl virus (TYLCV) on virus acquisition and transmission by its whitefly vector. Phytopathology 91(12):1209–1213. DOI:10.1094/PHYTO.2001.91.12.1209.
Lapidot M, Karniel U, Gelbart D, Fogel D, Evenor D, Kutsher Y, Makhbash Z, Nahon S, Shlomo H, Chen L, et al. 2015. A novel route controlling begomovirus resistance by the messenger RNA surveillance factor pelota. PLoS Genet 11(10):1–19. DOI:10.1371/journal.pgen.1005538.
Lestari P, Syukur M, Widiyono W. 2023. Morpho-physiological-based selection criteria for chili (Capsicum annuum) under drought stress during vegetative to generative phase. Biodiversitas 24(4):2315–2323. DOI:10.13057/biodiv/d240445.
Parisi M, Alioto D, Tripodi P. 2020. Overview of biotic stresses in pepper (Capsicum spp.): Sources of genetic resistance, molecular breeding and genomics. Int J Mol Sci 21(7). DOI:10.3390/ijms21072587.
Rusli ES, Hidayat SH, Suseno R, Tjahjono B. 1999. Gemini virus in chili peppers: a variety of symptoms and a study of transmission methods. Hama dan Penyakit Tumbuhan Bul 11(1): 26-31. [Indonesian]
Sayekti TWDA, Syukur M, Hidayat SH, Maharijaya A. 2021. Morphological response and genetic variability of four species of chili pepper (Capsicum spp.) under infection of pepper yellow leaf curl virus. Biodiversitas 22(11):4758–4765. DOI:10.13057/biodiv/d221107.
Simón A, Ruiz L, Velasco L, Janssen D. 2018. Absolute quantification of Tomato leaf curl New Delhi virus Spain strain, ToLCNDV-ES: Virus accumulation in a host-specific manner. Plant Dis 102(1):165–171. DOI:10.1094/PDIS-06-17-0840-RE.
Silva FN, Lima AT, Rocha CS, Castillo-Urquiza GP, Alves-Júnior M, Zerbini FM. 2014. Recombination and pseudorecombination driving the evolution of the begomoviruses Tomato severe rugose virus (ToSRV) and Tomato rugose mosaic virus (ToRMV): Two recombinant DNA-A components sharing the same DNA-B. Virol J 11(1):1–11. DOI:10.1186/1743-422X-11-66.
Soosaar JLM, Burch-Smith TM, Dinesh-Kumar SP. 2005. Mechanisms of plant resistance to viruses. Nat Rev Microbiol 3(10):789–798. DOI:10.1038/nrmicro1239.
Srivastava A, Mangal M, Saritha RK, Kalia P. 2017. Screening of chilli pepper (Capsicum spp.) lines for resistance to the begomoviruses causing chilli leaf curl disease in India. Crop Prot 100:177–185. DOI:10.1016/j.cropro.2017.06.015.
Virga G, Licata M, Consentino BB, Tuttolomondo T, Sabatino L, Leto C, La Bella S. 2020. Agro-morphological characterization of sicilian chili pepper accessions for ornamental purposes. Plants 9(10):1–14. doi:10.3390/plants9101400.
Wright S. 1921. Correlation and causation. J Agric Res 20 (7): 557-585. DOI: 10.1016/s0161-6420(13)30987-7.
Xavier CAD, Godinho MT, Mar TB, Ferro CG, Sande OFL, Silva JC, Ramos-Sobrinho R, Nascimento RN, Assunção I, Lima GSA, et al. 2021. Evolutionary dynamics of bipartite begomoviruses revealed by complete genome analysis. Mol Ecol 30(15):3747–3767. doi:10.1111/mec.15997.
Zhang D, Sun X, Battino M, Wei X, Shi J, Zhao L, Liu S, Xiao J, Shi B, Zou X. 2021. A comparative overview on chili pepper (capsicum genus) and sichuan pepper (zanthoxylum genus): From pungent spices to pharma-foods. Trends Food Sci Technol 117:148–162. DOI:10.1016/j.tifs.2021.03.004.

Most read articles by the same author(s)

1 2 3 4 5 > >>