Utilization of pretreated oil palm empty fruit bunches and their hydrolysate for ethanol production by Indonesian ethanologenic yeast

##plugins.themes.bootstrap3.article.main##

SITA HERIS ANITA
MAULIDA OKTAVIANI
EUIS HERMIATI

Abstract

Abstract. Anita SH, Oktaviani M, Hermiati E. 2023. Utilization of pretreated oil palm empty fruit bunches and their hydrolysate for ethanol production by Indonesian ethanologenic yeast. Biodiversitas 24: 5243-5252. Oil Palm Empty Fruit Bunches (OPEFB) represent a polysaccharide-rich raw material with promising potential for ethanol production. This study aimed to investigate the ethanologenic yeasts, specifically Saccharomyces cerevisiae InaCC Y93 and Kluyveromyces marxianus InaCC Y119, affect bioethanol production in three different systems: Separate Hydrolysis and Fermentation (SHF), Simultaneous Saccharification and Fermentation (SSF), and Prehydrolysis-Simultaneous Saccharification and Fermentation (PSSF). This work is distinguished by the use of indigenous Indonesian yeast strains, including a thermotolerant strain. In the pretreatment process, 1.13% oxalic acid was added to OPEFB and subjected to microwave treatment at 190°C for 3.01 min. Subsequently, cellulase enzymes (40 FPU/g) and a 10% (w/v) yeast inoculum were introduced into 5.27 g dry weight of pretreated OPEFB pulp. The OPEFB acid hydrolysate was also subjected to fermentation. Ethanol content was monitored at 24 h intervals for 72 h. The PSSF system employs K. marxianus InaCC Y119 at 48 h exhibited the highest ethanol concentration, yielding 0.290 g/g, equivalent to approximately 51.20% of the theoretical yield. Additionally, K. marxianus InaCC Y119 demonstrated its capability to ferment the OPEFB acid hydrolysate into ethanol. These findings underscore the considerable potential of K. marxianus for applications in fermenting both hexose and pentose sugars to produce ethanol within higher-temperature systems.

##plugins.themes.bootstrap3.article.details##

References
Adiatma JC, Prasojo H. 2021. Critical review on the biofuel development policy in Indonesia. Institute for Essential Services Reform (IESR), Jakarta.
Anita SH, Fitria, Solihat NN, Sari FP, Risanto L, Fatriasari W, Hermiati E. 2020. Optimization of microwave-assisted oxalic acid pretreatment of oil
palm empty fruit bunch for production of fermentable sugars. Waste Biomass Valorization 11(6): 2673-2687. DOI: https://doi.org/10.1007/s12649-018-00566-w.
Awoyale AA, Lokhat D. 2021. Experimental determination of the effects of pretreatment on selected Nigerian lignocellulosic biomass in bioethanol production. Sci Rep 11: 557. DOI: 10.1038/s41598-020-78105-8.
Baig MZ, Smita MD. 2018. Process optimization of ethanol production from cotton stalk hydrolysate using co culture of Saccharomyces cerevisiae and Pachysolen tannophilus. J Pure Appl Microbiol. DOI: 10.22207/JPAM.10.4.26.
Bhadana B, Chauhan M. 2016. Bioethanol production using Saccharomyces cerevisiae with different perspectives: substrates, growth variables, inhibitor reduction and immobilization. Ferment Technol 5(2): 131. DOI: 10.4172/2167-7972.1000131.
Bilal M, Ji L, Xu Y, Xu S, Lin Y, Iqbal HMN, Cheng H. 2022. Bioprospecting Kluyveromyces marxianus as a robust host for industrial biotechnology. Front Bioeng Biotechnol 10: 851768. DOI: 10.3389/fbioe.2022.851768.
Broda M, Yelle DJ, Serwanska K. 2022. Bioethanol production from lignocellulosic biomass—challenges and solutions. Molecules 27:8717. DOI: 10.3390/molecules27248717.
Cheng KK, Ge JP, Zhang JA, Ling HZ, Zhou YJ, Yang MD, Xu JM. 2007. Fermentation of pretreated sugarcane bagasse hemicellulose hydrolysate to ethanol by Pachysolen tannophilus. Biotechnol Lett 29: 1051-1055. DOI: 10.1007/s10529-007-9361-2.
Cuevas M, Saleh M, García-Martín JF, Sánchez S. 2020. Acid and enzymatic fractionation of olive stones for ethanol Production Using Pachysolen tannophilus. Processes 195(8): 1-14. DOI: 10.3390/pr8020195.
Dahnum D, Tasum SO, Triwahyuni E, Nurdin M, Abimanyu H. 2015. Comparison of SHF and SSF processes using enzyme and dry yeast for optimization of bioethanol production from empty fruit bunch. Energy Procedia 68: 107-116. DOI: 10.1016/j.egypro.2015.03.238.
Durbha SR, Tawa MD, Guntuku G, Tadimalla P, Yechuri VR, Muktinutalapati VSR. 2014. Optimization of fermentation parameters for R3DSC5 and R3DPMP strains for ethanol production. Int J Bioinforma Biol Sci. 2:71—83. https://intbioinformaticsjr.com/Journal/abstract/id/NzQw
Fatriasari W, Karimah A, Falah F, Anita SH. 2020. Effect of amphiphilic lignin derivatives (A-LD) surfactant addition on the fermentation process of sorghum bagasse kraft pulp for bioethanol production. IOP Conf Ser:Earth Environ Sci 591: 012002. doi:10.1088/1755-1315/591/1/012002.
Faustine AS, Rustini, Djamaan A. 2021. Bioethanol Production from various agricultural waste substrate using Saccharomyces cerevisiae. IOSR-JPBS 16(1):7-13. DOI: 10.9790/3008-1601030713.
Gladis A, Bondesson, PM, Galbe M, Zacchi G. 2015. Influence of different SSF conditions on ethanol production from corn stover at high solids loadings. Energy Sci Eng 3(5): 481-489. DOI: 10.1002/ese3.83.
Goshima T, Tsuji M, Inoue H, Yano S, Hoshino T, Matsushika A. 2013. Bioethanol production from lignocellulosic biomass by a novel Kluyveromyces marxianus strain. Biosci Biotechnol Biochem 77(7):1505–1510. DOI: 10.1271/bbb.130173.
Groves S, Liu J, Shonnard D, Bagley S. 2013. Evaluation of hardboard manufacturing process wastewater as a feedstream for ethanol production. J Ind Microbiol Biotechnol 40: 671-677. DOI: 10.1007/s10295-013-1272-8.
Hashem M, Zohri ANA, Ali MMA. 2013. Optimization of the fermentation conditions for ethanol production by new thermotolerant yeast strains of Kluyveromyces sp. Afr J Microbiol Res 7(37): 4550–4561. DOI: 10.5897/AJMR2013.5919.
Irwan I, Agus Salim L. 2021. Bioethanol from oil palm empty fruit bunch (OPEFB): a review pretreatment and enzymatic hydrolysis. IJTK 2(2): 1–14. DOI: 10.31332/ijtk.v2i2.18.
Kim J, Jayoung R, Young H, Soon-Kwang H, Hyun AK, Yong KC. 2014. Ethanol production from galactose by a newly isolated Saccharomyces cerevisiae KL17. Bioprocess Biosyst Eng 37:1871-1878. DOI: 10.1007/s00449-014-1161-1.
Kumoro, AC, Damayanti A, Bahlawan ZAS, Melina M, Puspawati H. 2021. Bioethanol production from oil palm empty fruit bunches using Saccharomyces cerevisiae immobilized on sodium alginate beads. Period Polytech: Chem Eng 65(4): 493–504. DOI: 10.3311/PPch.16775.
Lamichhane G, Acharya A, Poudel DK, Aryal B, Gyawali N, Niraula P, Phuyal SR, Budhathoki P, Bk G, Parajuli N. 2021. Recent advances in bioethanol production from lignocellulosic biomass. Int J Green Energy 18(7): 731-744. DOI: 10.1080/15435075.2021.1880910.
Liu Y, Xu J, Zhang Y, He M, Liang C, Yuan Z, Xie J. 2016. Improved ethanol production based on high solids fed-batch simultaneous saccharification and fermentation with alkali-pretreated sugarcane bagasse. BioResources 11(1): 2548–2556. DOI: 10.15376/biores.11.1.2548-2556.
Maryana R, Muryanto, Triwahyuni E, Bardant TB, Irawan Y, Sudiyani Y. 2021. Potency and challenges in the commercialization of bioethanol first and second generation in Indonesia. Proceedings of the SATREPS Conference 3(1): 79-84 [Indonesian].
Mejía-Barajas JA, Alvarez-Navarette M, Saavedra-Molina A, Campos- García J, Valenzuela-Vázquez U, Amaya-Delgado L, Arellano-Plaza M. 2018. Second-generation bioethanol production through a simultaneous saccharification-fermentation process using Kluyveromyces marxianus thermotolerant yeast. In: Yüksel E, Gök A, Eyvaz M. (eds.). Special Topics in Renewable Energy Systems. IntechOpen, London. DOI: 10.5772/intechopen.78052.
Miller GL. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31(3): 426–428. https://doi.org/10.1021/ac60147a030
Moya AJ, Bravo V, Mateo S, Sánchez S. 2008. Fermentation of acid hydrolysates from olive-tree pruning debris by Pachysolen tannophilus. Bioprocess Biosyst Eng 31: 611-617. DOI: 10.1007/s00449-008-0211-y.
Mueller M. 2009. Fermentation of xylose and xylans by Kluyveromyces marxianus IMB strains. [Thesis]. Oklahoma State University, USA.
Murata Y, Danjarean H, Fujimoto K, Kosugi A, Arai T, Ibrahim WA, Sulaiman O, Hashim R, Mori Y. 2015. Ethanol fermentation by the thermotolerant yeast Kluyveromyces marxianus TISTR5925, of extracted sap from old oil palm trunk. AIMS Energy 3(2): 201–213. DOI: 10.3934/energy.2015.2.201.
Musatto SI, Machado EMS, Carneiro LM, Teixera JA. 2012. Sugars metabolism and ethanol production by different yeast strains from coffee industry wastes hydrolysates. Appl Energy 92: 763-768. DOI: 10.1016/j.apenergy.2011.08.020.
Nachaiwieng W, Lumyong S, Pratanaphon R, Yoshioka K, Khanongnuch C. 2015. Potential in bioethanol production from various ethanol fermenting microorganisms using rice husk as substrate. Biodiversitas 16(2): 320–326. DOI: https://doi.org/10.13057/biodiv/d160229.
Paschos T, Louloudi A, Papayannakos N, Kekos D, Mamma D. 2022. Potential of barley straw for high titer bioethanol production applying pre-hydrolysis and simultaneous saccharification and fermentation at high solid loading. Biofuels 13(4): 467-473. DOI: 10.1080/17597269.2020.1760688.
Pornpukdeewattana S, Chalearmkit P, Iamsamang P. 2014. Optimization of fermentation temperature for very high gravity ethanol production using industrial strain of Saccharomyces cerevisiae SC90. TIJST 19(3): 21-37. https://ph02.tci-thaijo.org/index.php/SciTechAsia/article/view/21437.
Robak K, Balcerek M. 2018. Review of second-generation bioethanol production from residual biomass. Food Technol Biotechnol 56(2): 174-187. DOI: 10.17113/ftb.56.02.18.5428.
Rocha-Meneses L, Raud M, Orupold K, Kikas T. 2017. Second-generation bioethanol production: A review of strategies for waste valorisation. Agron Res 15(3): 830-847.
Saleh M, Cuevas M, Garcia JF, Sanchez S. 2014. Valorization of olive stones for xylitol and ethanol production from dilute acid pretreatment via enzymatic hydrolysis and fermentation by Pachysolen tannophilus. Biochem Eng J 90: 286–293. DOI:10.1016/j.bej.2014.06.023.
Sandoval-Nuñez D, Arellano-Plaza M, Gschaedler AJ, Amaya-Delgado L. 2017. A comparative study of lignocellulosic ethanol productivities by Kluyveromyces marxianus and Saccharomyces cerevisiae. Clean Technol Environ Policy:1-9. DOI:10.1007/s10098-017-1470-6.
Silva GM, Giordano RLC, Cruz AJG, Ramachandriya KD, Banat IM, Wilkins MR. 2015. Ethanol production from sugarcane bagasse using SSF process and thermotolerant yeast. ASABE 58(2): 193–200. DOI: 10.13031/trans.58.11024.
Siregar JS, Ahmad A, Amraini SZ. 2019. Effect of time fermentation and Saccharomyces cerevisiae concentration for bioethanol production from empty fruit bunch. J Phys Conf Ser 1351:012104. DOI:10.1088/1742-6596/1351/1/012104.
Solihat NN, Sari FP, Risanto L, Anita SH, Fitria, Fatriasari W, Hermiati E. 2017. Disruption of oil palm empty fruit bunches by microwave-assisted oxalic acid pretreatment methods. J Math Fund Sci 49(3): 1–14. DOI: https://doi.org/10.5614/j.math.fund.sci.2017.49.3.3.
Su T, Zhao D, Khodadadi M, Len C. 2020. Lignocellulosic biomass for bioethanol: recent advances, technology trends, and barriers to industrial development. Curr Opin Green Sustain Chem 24: 56-60, ISSN 2452-2236. DOI: 10.1016/j.cogsc.2020.04.005.
Sudiyani Y, Wahyuni ET, Muryanto M, Marno S, Putri N. 2020. bioethanol production from alkali steam explosion of oil palm of empty fruit bunch fiber. IOP Conf Ser Mater Sci Eng 854:012030. DOI:10.1088/1757-899X/854/1/012030.
Suhartini S, Rohma NA, Mardawati E, Kasbawati, Hidayat N, Melville L. 2022. Biorefining of oil palm empty fruit bunches for bioethanol and xylitol production in Indonesia: A review. Renew Sust Energ Rev 154: 111817. DOI: 10.1016/j.rser.2021.111817.
Sukhang S, Choojit S, Reungpeerakul T, Sangwichien C. 2020. Bioethanol production from oil palm empty fruit bunch with SSF and SHF processes using Kluyveromyces marxianus yeast. Cellulose 27: 301-314. DOI: 10.1007/s10570-019-02778-2.
Tareen AK, Punsuvon V, Sultan IN, Khan MW, Parakulsuksatid P. 2021. Cellulase addition and pre-hydrolysis effect of high solid fed-batch simultaneous saccharification and ethanol fermentation from a combined pretreated oil palm trunk. ACS Omega 6: 26119-26129. DOI: 10.1021/acsomega.1c03111.
Tran TTA, Le TKP, Mai TPM, Nguyen DQ. 2019. Bioethanol production from lignocellulosic biomass. In: Yun Y (ed.). Alcohol Fuels - Current Technologies and Future Prospect. IntechOpen, London. DOI: 10.5772/intechopen.86437.
Tomás-Pejó E, Ballesteros M, Olivia JM, Olsson L. 2010. Adaptation of the xylose fermenting yeast Saccharomyces cerevisiae F12 for improving ethanol production in different fed-batch SSF processes. J Ind Microbiol Biotechnol 37: 1211-1220. DOI: 10.1007/s10295-010-0768-8.
Trisna TE, Jai J, Shirleen D, Matthew R, Katherine. 2022. A review on bioethanol production through the valorization of food waste in Indonesia. IJLS 4(2): 60-86. DOI: https://doi.org/10.54250/ijls.v4i2.139.

Most read articles by the same author(s)