Bioprospecting three newly isolated white-rot fungi from Berbak-Sembilang National Park, Indonesia for biodecolorization of anthraquinone and azo dyes

##plugins.themes.bootstrap3.article.main##

OKTAN DWI NURHAYAT
http://orcid.org/0000-0002-2790-8743
DEDE HERI YULI YANTO
https://orcid.org/0000-0002-6833-3325
FENNY CLARA ARDIATI
https://orcid.org/0000-0003-4165-4388
KHARISMA PANJI RAMADHAN
SITA HERIS ANITA
HIROYUKI OKANO
TAKASHI WATANABE

Abstract

Abstract. Nurhayat OD, Ardiati FC, Ramadhan KP, Anita SH, Okano H, Watanabe T, Yanto DHY. 2021. Bioprospecting three newly isolated white-rot fungi from Berbak-Sembilang National Park, Indonesia for biodecolorization of anthraquinone and azo dyes. Biodiversitas 22: 613-623. Extensive use of textile dyes without proper wastewater treatment may jeopardize the water environment. In this study, bioprospecting newly isolated white-rot fungi from Berbak-Sembilang National Park for decolorizing four synthetic dyes was investigated. A total of 108 wood-decaying fungi were screened by using selective media, resulting in three isolates as the most promising fungal strains (BRB 11, BRB 73, BRB 81). BRB 81 had the best ability to decolorize 91.4% of AB129 and 77.8% of RB5 within 96 hours while the highest removal of RBBR and AO7 was performed by BRB11 around 60% and 37.6%, respectively. The enzymatic degradation was assumed to involve the decolorization process as laccase activities were observed with the highest around 116 UL-1. Based on molecular identification, these three fungal isolates were identified as Phellinus noxius BRB 11, Ceriporia lacerata BRB 81, and Leiotrametes menziesii BRB 73, respectively. In conclusion, P. noxius BRB 11, L. menziesii BRB 73, and C. lacerata BRB 81 could be used as biological agents in textile wastewater treatment and thus, it is important to conserve them as a part of the biodiversity within the local biosphere reserve.

##plugins.themes.bootstrap3.article.details##

References
Akiba M, Ota Y, Tsai IJ,Hattori T, Sahashi N, Kikuchi T. 2015. Genetic differentiation and spatial structure of Phellinus noxius, the causal agent of brown root rot of woody plants in Japan. PLoS One 10:8–14. DOI: https://doi.org/10.1371/journal.pone.0141792
Anita SH, Ardiati FC, Oktaviani M, Sari FP, Nurhayat OD, Ramadhan KP, Yanto DHY. 2020. Immobilization of laccase from Trametes hirsuta EDN 082 in light expanded clay aggregate for decolorization of Remazol Brilliant Blue R dye. Bioresour Technol Reports 12:100602. DOI: https://doi.org/10.1016/j.biteb.2020.100602
Anita SH, Yanto DHY, Fatriasari W. 2011. Lignin Use of Isolation Process from Black Liquor on The Biopulping of Betung Bamboo (Dendrocalamus aspe). J Penelit Has Hutan 29:312–321
Anita SH, Sari FP, Heri D, Yanto DHYY . 2019. Decolorization of Synthetic Dyes by Ligninolytic Enzymes from Trametes hirsuta D7. Makara 23:44–50. DOI: https://doi.org/10.7454/mss.v23i1.10803
An Q, Qiao J, Bian L, Han M, Yan X, Liu Z, Xie C. 2020. Comparative study on laccase activity of white rot fungi under submerged fermentation with different lignocellulosic wastes. Bioresources 15(4):9166.
Ann PJ, Chang TT, Ko WH. 2002. Phellinus noxius brown root rot of fruit and ornamental trees in Taiwan. Plant Dis 86:820–826. DOI: https://doi.org/10.1094/PDIS.2002.86.8.820
Birhanli E, Yesilada O. 2006. Increased production of laccase by pellets of Funalia trogii ATCC 200800 and Trametes versicolor ATCC 200801 in repeated-batch mode. Enzyme and Microbial Technology 39(6): 1286-1293.
Brooks FE. 2002. Brown root rot disease in American Samoa’s tropical rain forests. Pacific Sci 56:377–387. DOI: https://doi.org/10.1353/psc.2002.0031
Cardoso BK, Linde GA, Colauto NB, do Valle JS. 2018. Panus strigellus laccase decolorizes anthraquinone, azo, and triphenylmethane dyes. Biocatalysis and Agricultural Biotechnology 16: 558-563.
Champagne PP, Ramsay JA. 2005. Contribution of manganese peroxidase and laccase to dye decoloration by Trametes versicolor. Applied Microbiology and Biotechnology 69(3): 276-285.
Chulwan P, Lee Y, Kim T-H, Lee B, Lee J, Kim S. 2004. Decolorization of three acid dyes by enzymes from fungal strains. J. Microbiol. Biotechnology 14(6):1190-1195.
CIFOR (Center for International Forestry Research). 2021. Wetland rank by country. Retrieved July 13, 2021. https://www2.cifor.org/global-wetlands/
Couto SR. 2009. Dye removal by immobilised fungi. Biotechnology advances 27(3): 227-235.
Chen L, Tian QJ, Lin YH, He XB, Tan HWY. 2011. Toxicity Test and Decolorization of Simulated Orange G Dye Wastewater by Ceriporia lacerata P2 with a High-salinity Tolerance. Chinese J Appl Environ 17:876–882. DOI: https://doi.org/10.3724/sp.j.1145.2011.00876
Falah S, Sari NM, Hidayat A. 2018. Decolorization of Remazol Brilliant Blue R by laccase of newly isolated Leiotrametes flavida Strain ZUL62 from Bangka Heath Forest. Biodiversitas 19:633–639. DOI: https://doi.org/10.13057/biodiv/d190235
Felsenstein J. 1985. Confidence Limits On Phylogenies: An Approach Using The Bootstrap. Evolution 39:783–791. DOI: https://doi.org/10.1111/j.1558-5646.1985.tb00420.x
Ferrara MA, Bon EPS, Neto JSA. 2002. Use of steam explosion liquor from sugar cane bagasse for lignin peroxidase production by Phanerochaete chrysosporium. Appl Biochem Biotechnol - Part A Ezym Eng Biotechnol 98–100:289–300. DOI: https://doi.org/10.1385/ABAB:98-100:1-9:289
Gardes M, Bruns TD. 1993. ITS primers with enhanced specificity for basidiomycetes--application to the identification of mycorrhizae and rusts. Mol Ecol 2:113–118. DOI: https://doi.org/10.1111/j.1365-294x.1993.tb00005.x
Hadibarata T, Yusoff ARM, Kristanti RA. 2012. Decolorization and metabolism of anthraquionone-type dye by laccase of white-rot fungi Polyporus sp. S133. Water, Air, & Soil Pollution 223(2): 933-941.
Hadibarata T, Adnan LA, Yusoff ARM, Yuniarto A, Zubir MMFA, Khudhair AB, Teh ZC, Naser M.A. 2013. Microbial decolorization of an azo dye reactive black 5 using white-rot fungus Pleurotus eryngii F032. Water, Air, & Soil Pollution 224(6): 1-9.
Hanapi S, Abdelgalil S, Hatti-Kaul R, Aziz R, El Enshasy H. 2018. Isolation of a New Efficient Dye Decolorizing White Rot Fungus Cerrena sp. WICC F39. Journal of Scientific & Industrial Research 77(7): 399–404.
Hefnawy MA, Gharieb MM, Shaaban MT, Soliman AM. 2017. Optimization of Culture Condition for Enhanced Decolorization of Direct blue Dye by Aspergillus flavus and Penicillium canescens. J Appl Pharm Sci 7:083–092. DOI: https://doi.org/10.7324/JAPS.2017.70210
Huang J, Liu D, Lu J, Wang H, Wei X, Liu J. 2016. Biosorption of reactive black 5 by modified Aspergillus versicolor biomass: kinetics, capacity and mechanism studies. Colloids and Surfaces A: Physicochemical and Engineering Aspects 492: 242-248.
Imran M, Crowley DE, Khalid A,Hussain S, Mumtaz MW, Arshad M. 2015. Microbial biotechnology for decolorization of textile wastewaters. Rev Environ Sci Biotechnol 14:73–92. DOI: https://doi.org/10.1007/s11157-014-9344-4
Irshad M, Asgher M, Sheikh MA, Nawaz H. 2011. Purification and characterization of laccase produced by Schyzophylum commune IBL-06. in solid state culture of banana stalks. BioResources 6:2861–2873. DOI: https://doi.org/10.15376/biores.6.3.2861-2873
Jakarta Globe. 2019. Textile: Indonesia’s New Export Darling. Retrieved September 16, 2020. https://jakartaglobe.id/business/textile-indonesias-new-export-darling.
Jaramillo, A.C., Cobas, M., Hormaza, A. and Sanromán, M.Á., 2017. Degradation of adsorbed azo dye by solid-state fermentation: improvement of culture conditions, a kinetic study, and rotating drum bioreactor performance. Water, Air, & Soil Pollution 228(6): 205.
Kale SK, Deshmukh AG, Dudhare MS. 2014. Decolorization and wood degrading ability of locally isolated basidiomycetes. Journal of Scientific and Industrial Research 73(11): 735–739.
Kaur B, Kumar B, Garg N, Kaur N. 2015. Statistical optimization of conditions for decolorization of synthetic dyes by cordyceps militaris MTCC 3936 using RSM. Biomed Res Int 2015:17. DOI: https://doi.org/10.1155/2015/536745
Kaushik P, Malik A. 2009. Fungal dye decolourization: recent advances and future potential. Environment international 35(1):127-141.
Köktürk M, Altinda? F, Ozhan G, Calimli MH, Nas MS. 2021. Textile dyes Maxilon blue 5G and Reactive blue 203 induce acute toxicity and DNA damage during embryonic development of Danio rerio. Comp Biochem Physiol Part - C Toxicol Pharmacol 242: 108947. DOI: https://doi.org/10.1016/j.cbpc.2020.108947
Kumar S, Stecher G, Tamura K. 2016. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol Biol Evol 33:1870–1874. DOI: https://doi.org/10.1093/molbev/msw054
Legerská B, Chmelová D, Ondrejovi? M. 2016. Degradation of synthetic dyes by laccases–a mini-review. Nova Biotechnologica et Chimica 15(1): 90-106.
Lellis B, Fávaro-Polonio CZ, Pamphile JA, Polonio JC. 2019. Effects of textile dyes on health and the environment and bioremediation potential of living organisms. Biotechnol Res Innov 3:275–290. DOI: https://doi.org/10.1016/j.biori.2019.09.001
Mary RC, Posa Lahiru S, Wijedasa, Richard TC. 2011. Biodiversity and Conservation of Tropical Peat Swamp Forest. Bioscience 61(1): 49-57.
Mate DM, Alcalde M. 2017. Laccase: a multi-purpose biocatalyst at the forefront of biotechnology. Microb Biotechnol 10:1457–1467. DOI: https://doi.org/10.1111/1751-7915.12422
Merino-Restrepo A, Mejía-Otálvaro F, Velásquez-Quintero, C. and Hormaza-Anaguano, A., 2020. Evaluation of several white-rot fungi for the decolorization of a binary mixture of anionic dyes and characterization of the residual biomass as potential organic soil amendment. Journal of environmental management 254: 109805.
Matjuškova N, Okmane L, Zala D, Rozenfelde L, Puke M, Kruma I, Vedernikovs N, Rapoport A. 2017. Effect of lignin-containing media on growth of medicinal mushroom Lentinula edodes. Proc Latv Acad Sci Sect B 71:38–42. DOI: https://doi.org/10.1515/prolas-2017-0007
Moreira-Neto SL, Mussatto SI, Machado KMG, Milagres AMF. 2013. Decolorization of salt-alkaline effluent with industrial reactive dyes by laccase-producing basidiomycetes strains. Lett Appl Microbiol 56:283–290. DOI: https://doi.org/10.1111/lam.12049
Newman MC. 2015. Major Classes of Contaminants, 4th edn. CRC Press is an imprint of Taylor & Francis Group, Boca Raton
Oktaviani M, Yanto DHY. 2015. Biodecolorization of textile dye by isolated tropical fungi. Proceeding of International Conference of Indonesia Forestry Researchers III, 276-285.
Osma JF, Moilanen U, Toca-Herrera JL, Rodríguez-Couto S. 2011. Morphology and laccase production of white-rot fungi grown on wheat bran flakes under semi-solid-state fermentation conditions. FEMS microbiology letters 318(1): 27-34.
Page SE, Rieley JO, Doody K, Hodgson S, Husson S, Jenkins P, Morrogh Bernard H, Otway S, Wilshaw S. 1997. Biodiversity of tropical peat swamp forest: A case study of animal diversity in the Sungai Sebangau catchment of central Kalimantan, Indonesia. In: Rieley JO, Page SE (eds) Tropical Peatlands. Samara, UK.
Pecková V, Legerská B, Chmelová D, Horník M, Ondrejovi? M. 2020. Comparison of efficiency for monoazo dye removal by different species of white-rot fungi. International Journal of Environmental Science and Technology 18(1): 21–32.
Poojary H, Hoskeri A, Kaur A, Mugeraya G. 2012. Comparative Production of Ligninolytic Enzymes from Novel Isolates of Basidiomycetes and Their Potential to Degrade Textile Dyes. Nat Sci 10:90–96.
Pramudianto A. 2018. Flora dan fauna pada ekosistem lahan gambut dan status perlindungannya dalam hukum nasional dan internasional. Journal of Environmental Sustainability Management 2(3): 185-199 [Indonesian]
Ramadhan KP, Anita SH, Oktaviani M, Budi RP, Sari FP, Nurhayat OD, Yanto DHY. 2021. Biodecolorization of Anthraquinone and Azo Dyes by Newly Isolated Indonesian White-Rot Fungi. Biosaintifika 13:16–25.
Risdianto H, Sofianti E, Suhardi SH, Setiadi T. 2012. Optimisation of laccase production using white rot fungi and agriculture wastes in solid state fermentation. ITB Journal of Engineering Science 44(2): 93-105.
Riva S. 2006. Laccases: blue enzymes for green chemistry. Trends in Biotechnology 24(5): 219–226.
Rodriguez E, Pickard MA,Vazquez-Duhalt R. 1999. Industrial dye decolorization by laccases from ligninolytic fungi. Curr Microbiol 38(1): 27–32.
Rogalski, JERZY, Lundell T, Leonowicz ANDRZEJ, Hatakka A. 1991. Production of laccase, lignin peroxidase and manganese-dependent peroxidase by various strains of Trametes versicolor depending on culture conditions.
RSIS (Ramsar Sites Information Service). 1991. Ramsar Sites in Indonesia (Information Sheet on Ramsar Wetlands – Berbak National Park). Retrieved July 13, 2021. https://rsis.ramsar.org/RISapp/files/RISrep/ID554RIS.pdf
RSIS (Ramsar Sites Information Service). 2012. Information Sheet on Ramsar Wetlands (RIS) – Sembilang National Park. Retrieved July 13, 2021. https://rsis.ramsar.org/RISapp/files/RISrep/ID1945RIS.pdf
Shaheen R, Asgher M, Hussain F, Bhatti HN. 2017. Immobilized lignin peroxidase from Ganoderma lucidum IBL-05 with improved dye decolorization and cytotoxicity reduction properties. Int J Biol Macromol 103:57–64. DOI: https://doi.org/10.1016/j.ijbiomac.2017.04.040
Silva R, Brandão-Costa RMP, Hadassah G, Pacheco GMS, Brito FT, Bezerra RP, Silva A, Silva LF, Marcia V. 2018. Fungi of Biotechnological Interest in the Decolouration of Textile Effluents. Ann Biomed Technol Eng 1:1–4
Singh L. 2017. Biodegradation of Synthetic Dyes: A Mycoremediation Approach for Degradation/Decolourization of Textile Dyes and Effluents. J Appl Biotechnol Bioeng 3:430–435. DOI: https://doi.org/10.15406/jabb.2017.03.00081
Sintakindi A, Ankamwar B. 2020. Uptake of methylene blue from aqueous solution by naturally grown Daedalea africana and Phellinus adamantinus fungi. ACS omega 5(22): 12905-12914.
Slama H Ben, Bouket AC, Pourhassan Z, Alenezi FN, Silini A, Cherif-Silini H, Oszako T, Luptakova L, Golinska P, Belbahri L. 2021. Diversity of synthetic dyes from textile industries, discharge impacts and treatment methods. Appl Sci 11:1–21. DOI: https://doi.org/10.3390/app11146255
Song Q, Deng X, Song RQ. 2020. Expression of Pleurotus ostreatus laccase gene in Pichia pastoris and its degradation of corn stover lignin. Microorganisms 8:2–14. DOI: https://doi.org/10.3390/microorganisms8040601
Sudiana IK, Sastrawidana IDK, Sukarta IN. 2018. Decolorization Study of Remazol Black B Textile Dye Using Local Fungi of Ganoderma sp . and Their Ligninolytic Enzymes. J Environ Sci Technol 11:16–22. DOI: https://doi.org/10.3923/jest.2018.16.22
Sumandono T, Saragih H, Watanabe T, Amirta R. 2015. Decolorization of Remazol Brilliant Blue R by new isolated white rot fungus collected from tropical rain forest in East Kalimantan and its ligninolytic enzymes activity. Procedia Environ Sci 28:45–51. DOI: https://doi.org/10.1016/j.proenv.2015.07.007
Thorn RG, Reddy CA, Harris D. 1996. Isolation of Saprophytic Basidiomycetes from Soil. Appl Environ Microbiol 62:4288–4292
Tišma M, Šali? A, Planini? M, Zelic B, Potocnik M, Selo G, Bucic-Kojic A. 2020. Production, characterisation and immobilization of laccase for an efficient aniline-based dye decolourization. J Water Process Eng 36:101327. DOI: https://doi.org/10.1016/j.jwpe.2020.101327
UNESCO (United Nations Educational, Scientific and Cultural Organization). 2019. Berbak-Sembilang Biosphere Reserve, Indonesia. Retrieved July 13, 2021. https://en.unesco.org/biosphere/aspac/berbak-sembilang
Wang N, Chu Y, Wu F, Zhao Z, Xu X. 2017. Decolorization and degradation of Congo red by a newly isolated white rot fungus, Ceriporia lacerata, from decayed mulberry branches. Int Biodeterior Biodegrad 117:236–244. DOI: https://doi.org/10.1016/j.ibiod.2016.12.015
Wang Y, Wang H, Wang X, Xiao Y, Zhou Y, Su X, Cai J, Sun F. 2020. Resuscitation, isolation and immobilization of bacterial species for efficient textile wastewater treatment: A critical review and update. Sci Total Environ 730:139034. DOI: https://doi.org/10.1016/j.scitotenv.2020.139034
Welti S, Moreau PA, Favel A, Courtecuisse R, Haon M, Navarro D, Taussac S, Lesage-Meessen L. 2012. Molecular phylogeny of Trametes and related genera, and description of a new genus Leiotrametes. Fungal Divers 55:47–64. DOI: https://doi.org/10.1007/s13225-011-0149-2
Wong Y, Yu J. 1999. Laccase-catalyzed decolorization of synthetic dyes. Water research 33(16): 3512-3520.
Yang J, Yang X, Lin Y, Ng TB, Lin J, Ye X. 2015. Laccase-catalyzed decolorization of malachite green: performance optimization and degradation mechanism. PloS one 10(5): e0127714.
Yule, CM. 2010. Loss of biodiversity and ecosystem functioning in Indo-Malayan peat swamp forests. Biodiversity and Conservation 19: 393-409.
Yanto DHY, Auliana N, Anita SH, Watanabe T. 2019. Decolorization of synthetic textile dyes by laccase from newly isolated Trametes hirsuta EDN084 mediated by violuric acid. IOP Conf Ser Earth Environ Sci 374 (1): 0-7. DOI: https://doi.org/10.1088/1755-1315/374/1/012005
Yanto DHY, Guntoro MA, Nurhayat OD, Anita SH, Oktaviani M, Ramadhan KP, Pradipta MF, Watanabe T. 2021. Biodegradation and biodetoxification of batik dye wastewater by laccase from Trametes hirsuta EDN 082 immobilised on light expanded clay aggregate. 3 Biotech 11:1–13. DOI: https://doi.org/10.1007/s13205-021-02806-8
Yesilada O, Birhanli E, Geckil H. 2018. Bioremediation and Decolorization of Textile Dyes by White Rot Fungi and Laccase Enzymes. In: Prasad R (ed) Mycoremediation and Environmental Sustainability: Volume 2 (pp 121–153). Springer International Publishing, Cham.
Zahmatkesh M, Spanjers H, van Lier JB. 2018. A novel approach for application of white rot fungi in wastewater treatment under non-sterile conditions: immobilization of fungi on sorghum. Environ Technol 39:2030–2040. DOI: https://doi.org/10.1080/09593330.2017.1347718
Zeng X, Cai Y, Liao X, Zeng X, Li W, Zhang D. 2011. Decolorization of synthetic dyes by crude laccase from a newly isolated Trametes trogii strain cultivated on solid agro-industrial residue. Journal of Hazardous Materials 187(1–3): 517–525.
Zhou S, Raouche S, Grisel S, Navarro D, Sigoillot JC, Herpoel-Gimbert I. 2015. Solid-state fermentation in multi-well plates to assess pretreatment efficiency of rot fungi on lignocellulose biomass. Microb Biotechnol 8:940–949. DOI: https://doi.org/10.1111/1751-7915.12307
Zhuo R, Zhang J, Yu H, Ma F, Zhang X. 2019. Chemosphere The roles of Pleurotus ostreatus HAUCC 162 laccase isoenzymes in decolorization of synthetic dyes and the transformation pathways. Chemosphere 234:733–745. DOI: https://doi.org/10.1016/j.chemosphere.2019.06.113