Fungal diversity associated with the decomposition of Avicennia marina leaf litter at various salinity levels

##plugins.themes.bootstrap3.article.main##

YUNASFI
IPANNA ENGGAR SUSETYA
BUDI UTOMO
AFIFUDDIN DALIMUNTHE
SAMSURI
ANITA ZAITUNAH

Abstract

Abstract. Yunasfi, Susetya IE, Utomo B, Dalimunthe A, Samsuri, Zaitunah A. 2024. Fungal diversity associated with the decomposition of Avicennia marina leaf litter at various salinity levels. Biodiversitas 25: 792-800. The process of litter decomposition in mangrove ecosystem is influenced by both biological and environmental factors. Biological factors include organisms, such as worms, snails, bacteria, and fungi, while environmental factors are soil, water pH, salinity, and others. Therefore, this study aimed to determine the effect of salinity level and length of decomposition period, dominant fungi, as well as carbohydrate and protein levels in Avicennia marina leaf litter. In the experiment, litter bags containing 50 g of A. marina leaf litter were used and placed at salinity levels of <10 ppt, 11-20 ppt, and 21-30 ppt. The results showed that the highest decomposition rate i.e., 6.90/year, with length of time = 0.15 years was found in A. marina leaf litter at a salinity level of 21 ppt-30 ppt. At salinity levels of <10 and 10-20 ppt, the decomposition rate was 4.55 and 5.91, respectively, while the litter period in soil was 0.22 and 0.17 years. Furthermore, the residual leaf litter decomposed at salinity levels of <10 ppt, 11-20 ppt, and 21-30 ppt was 6.67 g, 4.57 g, and 4.36 g, respectively. The average value of the Shannon diversity Index for fungal species in A. marina leaf litter, which had experienced decomposition ranged from low to moderate. At salinity levels of <10 ppt, 10-20 ppt, and 20-30 ppt, the values obtained were 1.96, 1.86, and 1.95 respectively. The fungal species diversity index was greater than the control, 1.26. Based on the results, A. marina leaf litter placed at salinity level of <10 ppt had the highest carbohydrate and protein content of 12.10 and 9.12%, respectively, while the lowest protein content of 8.28% was recorded at salinity level of 20-30 ppt. This study showed that the longer the decomposition period at various levels of salinity, the higher the protein content in absolute terms.

##plugins.themes.bootstrap3.article.details##

References
REFERENCES
Alam, M. I. A. O. Debrot. M. U. Ahmed , M. N Ahsan , M.C. J. Verdegem. 2021. Synergistic effects of mangrove leaf litter and supplemental feed on water quality, growth and survival of shrimp (Penaeus monodon, Fabricius, 1798) post larvae. Aquaculture 545 737237 https://doi.org/10.1016/j.aquaculture.2021.737237
Amani M, Graca MAS, Fereira V (2019) Effects of elevated atmospheric CO 2 concentration and temperature on litter International Review of Hydrobiology Volume 104, Issue 1-2 p. 14-25
Ananda K, Sridhar KR. 2004. Diversity of filamentous fungi on decomposing leaf and woody litter of mangrove forests in the southwest coast of India. Curr. Sci. ;80:1431–1437.
Baldrian P, Miroslav Kola?ík, Martina Stursová, Jan Kopecký, Vendula Valášková, Tomáš V?trovský, Lucia Zif?áková, Jaroslav Snajdr, Jakub Rídl, Cestmír Vl?ek, Jana Vo?íšková. 2012. Active and total microbial communities in forest soil are largely different and highly stratified during decomposition. ISME J. 6:248–258. doi: 10.1038/ismej.2011.95.
Baskaran R, Mohan P, Sivakumar K, Ragavan P, Sachithanandam V. 2012. Phyllosphere microbial populations of ten true mangrove species of the Andaman Island. Int. J. Microbiol. Res. 3:124–127.
Bernal, M. P., Alburquerque, J. A., & Moral, R. 2009. Bioresource Technology Composting of animal manures and chemical criteria for compost maturity assessment. A review. Bioresource technology, 100(22), 5444-5453.
Cristiano G. A. D. Sabatino. 2023. How does water current velocity affect invertebrate community and leaf-litter breakdown in a physicochemically stable freshwater ecosystem? An experimental study in twonearby reaches (erosional vs. depositional) of the Vera Spring (Central Italy). Ecohydrology. 2023;e2532. wileyonlinelibrary.com/journal/eco 1 of 10 https://doi.org/10.1002/eco.2532
Dix N.J. dan J. Webster, 2012. Fungal Ecology. Chapman and Hall. London, Glasgow, Weinheim, New York, Tokyo, Melbourne, Madras.
Du, Ningning, W Li, L Qiu, Y Zhang, X Wei, X Zhang. 2020. Mass loss and nutrient release during the decomposition of sixteen types of plant litter with contrasting quality under three precipitation regimes. Ecology and Evolution. 2020;10:3367–3382
Farooqui, Z., P. J. Siddiqui, M. Rasheed. 2014. Change in Organic, Inorganic contents, Carbon Nitrogen ratio in Decomposing Avicennia marina and Rhizophora mucronata Leaves on Tidal mudflats in Hajambro Creek, Indus Delta, Pakistan. The Journal of Tropical Life Science. Vol. 4 No. 1, pp 37-45.
Febriana S,Sulistijorini,Kusmana, Cecep, 2016. Produktivitas Dan Laju Dekomposisi Serasah Avicennia marina dan Rhizophora apiculata di Cagar Alam Pulau Dua Banten. http://repository.ipb.ac.id/handle/123456789/80946
Ferreira V, Chauvet E (2011) Synergistic effects of water temperature and dissolved nutrients on litter decomposition and associated fungi. Glob Chang Biol 17:551–564. https:// doi. org/ 10. 1111/j. 1365- 2486. 2010. 02185.x
Fisher, R. F., dan D. Binkley. 2000. Ecology and Management of Forest Soil. Third Edition. John Wiley and Sons, Inc. New York, Chichester, Weinheim, Brisbane, Singapore, Toronto.
Holguin G, Vazquez P, Bashan Y. The role of sediment microorganisms in the productivity, conservation, and rehabilitation of mangrove ecosystems 2001: An overview. Biol. Fertil. Soils. 33:265–278. doi: 10.1007/s003740000319.
Ludwig, J. A., dan J. F. Reynolds. 1988. Statistical Ecology : A Primer on Methods and Computing. John Wiley & Sons. New York, Chichester, Brisbane, Toronto, Singapore.
Maeda, H. A. (2016). Lignin biosynthesis: Tyrosine shortcut in grasses. Nature Plants, 2(6), 16080. https://doi.org/10.1038/nplan ts.2016.80
Mahmudi M, A. Adzim, D. H. Fitri, E. D. Lusiana, N. R. Buwono, S. Arsad, M. Musa. 2021. Performance of Avicennia alba and Rhizophora mucronata as Lead Bioaccumulatorin Bee Jay Bakau Resort, Indonesia. Journal of Ecological Engineering 2021, 22(2), 169–177. https://doi.org/10.12911/22998993/131032.
Marano AV, Pires-Zottarelli CLA, Barrera MD, Steciow MM, Gleason FH. 2011. Diversity, role in decomposition, and succession of zoosporic fungi and straminipiles on submerged decaying leaves in a woodland stream.. Hydrobiologia. 659:93–109. doi: 10.1007/s10750-009-0006-4.
Maria GL, Sridhar KR, Bärlocher F. 2006. Decomposition of dead twigs of Avicennia officinalis and Rhizophora mucronata in a mangrove in southwestern India. Bot. Mar. 49:450–455. doi: 10.1515/BOT.2006.056.
Mfilinge PL, Meziane T, Bachok Z. 2003. Fatty acids in decomposing mangrove leaves: microbial activity, decay and nutritional quality. Mar Ecol Prog Ser. 265:97–105. doi: 10.3354/meps265097.
Moitinho MA, Bononi L, Souza DT, Melo IS, Taketani RG. 2018. Bacterial succession decreases network complexity during plant material decomposition in mangroves. Microb. Ecol. doi: 10.1007/s00248-018-1190-4.
Olson, J. S. 1963. Energy Storage and the Balance of Producer and Decomposers in Ecological Systems. Ecology 44 : 322 – 331.
Pascoal C, Cassio F. 2004. Contribution of fungi and bacteria to leaf litter decomposition in a polluted river. Appl. Environ. Microbiol. 70:5266–5273. doi: 10.1128/AEM.70.9.5266-5273.2004.
Raghukumar S. 2017. Fungi in coastal and oceanic marine ecosystems: Marine fungi. Fungi Coast. Ocean. Mar. Ecosyst. Mar. Fungi. doi: 10.1007/978-3-319-54304-8.
Sebastianes F L D S, A S R Dumaresq, P T Lacava, R Harakava, J L Azevedo, I S de Melo & A A P-Kleiner . 2013 Species diversity of culturable endophytic fungi from Brazilian mangrove forests. Curr. Genet. 59:153–166. doi: 10.1007/s00294-013-0396-8.
Taketani RG, Moitinho MA, Mauchline TH, Melo IS. 2018. Co-occurrence patterns of litter decomposing communities in mangroves indicate a robust community resistant to disturbances. PeerJ. 6:e5710. doi: 10.7717/peerj.5710.
Tiegs SD, Costello DM, Isken MW. 2019. Global patterns and drivers of ecosystem functioning in rivers and riparian zones.Sci Adv 5:eaav0486
Tremblay L, Benner R. 2006. Microbial contributions to N-immobilization and organic matter preservation in decaying plant detritus. Geochim Cosmochim Acta.70:133–146. doi: 10.1016/j.gca.2005.08.024.
Vanholme, R., Storme, V., Vanholme, B., Sundin, L., Christensen, J. H., & Goeminne, G. (2012). A systems biology view of responses to lignin biosynthesis perturbations in Arabidopsis. The Plant Cell, 24(9),3506–3529.
Waiser, M. J. dan R. D. Robarts. 1995. Microbial Nutrient Limitation in Praire Saline Lakes with High Sulfate Concentration. Limnol. Oceanogr. 40 : 566 – 574.
Yunasfi, S. Hadi, C. Kusmana, L.I. Sudirman dan B. Tjahjono. 2006. Dekomposisi Serasah Daun A. marina oleh Bakteri dan Fungi pada Berbagai Tingkat Salinitas. (Disertasi). Sekolah Pascasarjana Institut Pertanian Bogor. Bogor.
Zimmer M. Encyclopedia of ecology (Second Edition) Oxford: Elsevier; 2019. Detritus; pp. 292–301.
Zhou, Y., Clark, M., Su, J., & Xiao, C. 2015. Litter decomposition and soil microbial community composition in three Korean pine (Pinus koraiensis) forests along an altitudinal gradient. Plant and Soil, 386(1–2),171–183. https://doi.org/10.1007/s1110 4-014-2254-y

Most read articles by the same author(s)

1 2 > >>