The addition of anaerobic fungi isolates from buffalo rumen to increase fiber digestibility, fermentation, and microbial population in ruminants

##plugins.themes.bootstrap3.article.main##

SINTA AGUSTINA
KOMANG GEDE WIRYAWAN
https://orcid.org/0000-0002-0593-9653
SRI SUHARTI
https://orcid.org/0000-0002-0542-4086
ANJA MERYANDINI
https://orcid.org/0000-0002-0956-1125

Abstract

Abstract. Agustina S, Wiryawan KG, Suharti S, Meryandini A. 2024. The addition of anaerobic fungi isolates from buffalo rumen to increase fiber digestibility, fermentation, and microbial population in ruminants. Biodiversitas 25: 107-115. Rumen microbes have an important role in the rumen. Anaerobic fungi are microbes needed in the forage digestion process in the rumen. The addition of microbes, particularly anaerobic fungi is essential to increase the digestibility of forage within rumen. Therefore, this study aimed to evaluate the addition of anaerobic fungi isolates from buffalo rumen to increase fiber digestibility, fermentation, and microbial population in sheep rumen. The in vitro tests were carried out using the Tilley and Terry method, using elephant grass and rice straw as tested forage. Piromyces sp. (F1, and F3), Caecomyces sp. (F2, and F5), and Neocallimastix frontalis (F4) isolates from buffalo rumen were used as tested anaerobic fungi. The result showed that the addition of anaerobic fungi isolates from buffalo rumen significantly affected fiber digestibility (Neutral Detergent Fiber (NDF), Acid Detergent Fiber (ADF), cellulose and hemicellulose) except lignin digestibility. The addition of N. frontalis had higher fiber digestibility which is 49.02% NDF digestibility, 42.11% ADF digestibility, 44.28% hemicellulose digestibility, and 38.60% cellulose digestibility. Furthermore, N. frontalis also significantly increased In vitro Dry Matter Digestibility (IVDMD), In vitro Organic Matter Digestibility (IVOMD), ammonium (NH3) production, total Volatile Fatty Acid (VFA) production, and microbial population compared to Piromyces sp., and Caecomyces sp. In conclusion, anaerobic fungus type N. frontalis showed promising potential to be used as a ruminant probiotic due to its superior effect on fiber digestibility, fermentation, and microbial population compared to Caecomyces sp. and Piromyces sp.

##plugins.themes.bootstrap3.article.details##

References
Agustina S, Wiryawan KG, Suharti S, Meryandini A. 2022a. Molecular identification of anaerobic fungi isolated from buffalo rumen with their growth rate, cellulase enzyme activity, and fermentation products characteristics. BIODIVERSITAS 23: 6448-6455. DOI: 10.13057/biodiv/d231243 .
Agustina S, Wiryawan KG, Suharti S, Meryandini A. 2022b. The enrichment process and morphological identification of anaerobic fungi isolated from buffalo rumen. BIODIVERSITAS 23: 469-477. DOI: 10.13057/biodiv/d230150.
Alzagameem A, Klein SE, Bergs M, Do XT, Korte I, Dohlen S, Hüwe C, Kreyenschmidt J, Kamm B, Larkins M, Schulze M. 2019. Antimicrobial activity of lignin and lignin-derived cellulose and chitosan composites against selected pathogenic and spoilage microorganisms. Polymers (Basel) 11: 670-687. DOI: 10.3390/polym11040670.
Association of Official Analythical Chemists (AOAC). 2005. Official Methods of Analyses (17th ed.). Association of Official Analythical Chemists, Washington DC.
Beckett L, Gleason CB, Bedford A, Liebe D, Yohe TT, Hall MB, Daniels KM, White RR. 2021. Rumen volatile fatty acid molar proportions, rumen epithelial gene expression, and blood metabolite concentration responses to ruminally degradable starch and fiber supplies. J. Dairy Sci. 104: 8857-8869. DOI: 10.3168/jds.2020-19622.
Bharanidharan R, Arokiyaraj S, Kim EB, Lee CH, Woo YW, Na Y, Kim D, Kim KH. 2018. Ruminal methane emissions, metabolic, and microbial profile of Holstein steers fed forage and concentrate, separately or as a total mixed ration. Plos ONE 13: e0202446. DOI: 10.1371/journal.pone.0202446.
Chen HL, Chen YC, Lu MYJ, Chang JJ, Wang HTC, Ke HM, Wang TY, Ruan SK, Wang TY, Hung KY, Cho HY, Lin WT, Shih MC, Li WH. 2012. A highly efficient ?-glucosidase from buffalo rumen fungus Neocallimastix praticiarum W5. Biotechnol Biofuels 5: 1-10. DOI: 10.1186/1754-6834-5-24.
Comlekcioglu U, Gunes M, Altun H, Ekiz DO, Aygan A. 2017. Coexpression of rumen fungal xylanase and bifunctional cellulase genes in Escherichia coli. Braz Arch Biol Technol 60: e17160462. DOI: 10.1590/1678-4324-2017160462.
Dollhofer V, Dandikas V, Dorn-In S, Bauer C, Lebuhn M, Bauer J. 2018. Accelerated biogas production from lignocellulosic biomass after pre-treatment with Neocallimastix frontalis. Bioresour Technol 264: 219-227. DOI: 10.1016/j.biortech.2018.05.068.
Eckart M, Fliegerova K, Hoffman K, Voight K. 2010. Molecular identification of anaerobic fungi. Di dalam. Gherbawy Y, Voight K. (eds) Molecular Identification of Fungi. Berlin (GER): Springer. pp. 297-313. DOI: 10.1007/978-3-642-05042-8_14.
General Laboratory Procedure. 1966. Departemen of Dairy Science. University of Wisconsin. Madison.
Ghimire S, Gregorini P, Hanigan MD. 2014. Evaluation of predictions of volatile fatty acid production rates by the Molly cow model. J Dairy Sci 97(1): 354-362. DOI: 10.3168/jds.2012-6199.
Gruninger RJ, Puniya AK, Callaghan TM, Edwards JE, Youssef N, Dagar SS, Fliegerova K, Griffith GW, Forster R, Tsang A, McAllister T, Elshahed MS. 2014. Anaerobic fungi (phylum Neocallimastigomycota): advances in understanding their taxonomy, life cycle, ecology, role and biotechnological potential. FEMS Microbiol Ecol 90: 1-17. DOI: 10.1111/1574-6941.12383.
Guo W, Wang W, Bi S, Long R, Ullah F, Shafiq M, Zhou M, Zhang Y. 2020. Characterization of anaerobic rumen fungal community composition in Yak, Tibetan Sheep and Small Tail Han Sheep grazing on the Qinghai-Tibetan Plateu. Animals 10:144-156. DOI: 10.3390/ani10010144.
Henske JK, Gilmore SP, Haitjema CH, Solomon KV, O’Malley M. 2018. Biomass-degrading enzymes are catabolite repressed in anaerobic fungi. AIChE Journal 64: 4263-4270. DOI: 10.1002/aic.16395.
Hess M, Paul SS, Puniya AK, Giezen MVD, Shaw C, Edwards JE, Fliegerova K. 2020. Anaerobic fungi: past, present, and future. Front Microbiol 11: 1-18. DOI: 10.3389/fmicb.2020.584893.
Hungate RE. 1969. A roll-tube method for cultivation of strict anaerobs. Methods Microbiol 3: 117-132. DOI: 10.1016/S0580-9517(08)70503-8.
Jayanegara A, Ridla M, Laconi EB, Nahrowi. 2019. Elephant grass, rice straw and maize silage as feeds: a dynamic modelling approach on their degradation kinetics. IOP Conf Ser: Earth Environ Sci 387: 012002. DOI: 10.1088/1755-1315/387/1/012002.
Jimenez HR, Edwards JE, Sanderson R, Kingston-Smith AH, McEwan NR, Theodorou MK. 2020. Cut-lenghts of perennial ryegrass leaf-blades influences in vitro fermentation by anaerobic fungus Neocallimastix frontalis. Microorganisms 8: 1774-1788. DOI: 10.3390/microorganisms8111774.
Juniawati , Miskiyah, Widaningrum. 2017. Application of vinegar as biopreservative to inhibit Salmonella typhirium in fresh chicken meat. Bull Anim Sci 41: 187-196. DOI: 10.21059/buletinpeternak.v41i2.13596.
Kang X, Kirui A, Dickwella Widanage MC, Mentink-Vigier F, Cosgrove D J, Wang T. 2019. Lignin-polysaccharide interactions in plant secondary cell walls revealed by solid-state NMR. Nat Commun 10: 347-355. DOI: 10.1038/s41467-018-08252-0.
Kumar S, Sehgal JP, Puniya AK, Kumari R. 2018. In vitro bidegradation of wheat straw and wheat staw based total mixed ration using zoospores of different elite ruminal fungi. The Journal of AgriSearch (JAS) 5: 269-275.
Li Y, Jin W, Cheng Y, Zhu W. 2016. Effect of the associated methanogen Methanobrevibacter thaueri on the dynamic profile of end and intermediate metabolites of anaerobic fungus Piromyces sp. F1. Curr Microbiol 73: 434-441. DOI: 10.1007/s00284-016-1078-9.
Lillington SP, Chrisler W, Haitjema CH, Gilmore SP, Smallwood CR, Shutthanandan V, Evans JE, O’Malley MA. 2021. Cellulosome localization patterns vary across life stages of anaerobic fungi. mBio 12(3): e0083221. doi: https://doi.org/10.1128/mbio.00832-21.
Limo SR, Pontoh JS, Wuntu AD. 2015. Analisis beberapa asam organik pada nira aren menggunakan HPLC fase terbalik kolom YMC triart C18. JURNAL MIPA 4: 51-56. DOI: 10.35799/jm.4.1.2015.6905.
Liu J, Zhang M, Xue C, Zhu W, Mao S. 2016. Characterization and comparison of the temporal dynamics of ruminal bacterial microbiota colonizing rice straw and alfalfa hay within ruminants. J Dairy Sci 99: 9668-9681. DOI: 10.3168/jds.2016-11398.
Lobo F, Franco AR, Fernandes EM, Reis RL. 2021. An overview of the antimicrobial properties of lignocellulosic materials. Molecules (Basel, Switzerland) 26: 1749-1769. DOI: 10.3390/molecules26061749.
Ma J, Zhong P, Li Y, Sun Z, Sun X, Aung M, Hao L, Cheng Y, Zhu W. 2022. Hydrogenosome, pairing anaerobic fungi and H2-utilizing microorganisms based on metabolic ties to facilitate biomass utilization. J Fungi 8: 338-358. DOI: 10.3390/jof8040338.
Nagpal R, Puniya AK, Sehgal JP, Singh K. 2010. Influence of bacteria and protozoa from the rumen of buffalo on in vitro activities of anaerobic fungus Caecomyces sp. isolated from the feces of elephant. J Yeast Fungal Res. 1: 152-156.
Ogimoto K, Imai S. 1981. Atlas of Rumen Microbiology. Japan Scientific Societes, Tokyo.
Panahi HKS, Dehhaghi M, Guillemin GJ, Gupta VK, Lam SS, Aghbashlo M, Tabatabaei M. 2022. A comprehensive review on anaerobic fungi applications in biofuels porduction. Sci Total Environ 829: 154521. DOI: 10.1016/j.scitotenv.2022.154521.
Peripolli V, Barcellos JOJ, Prates ER, McManus C, da Silva LP, Stella LA, Junior JBGC, Lopes RB. 2016. Nutritional value of baled rice straw for ruminant feed. Rev Bras de Zootec 45: 392-399. DOI: 10.1590/S1806-92902016000700006.
Puniya AK, Salem AZM, Kumar S, Dagar SS, Griffith GW, Puniya M, Ravella SR, Kumar N, Dhewa T, Kumar R. 2015. Role of live microbial feed supplements with reference to anaerobic fungi in ruminant productivity: a review. J Integr Agric 14: 550-560. DOI: 10.1016/S2095-3119(14)60837-6.
Rabee AE, Forster RJ, Elekwachi CO, Kewan KZ, Sabra EA, Shawket SM, Mahrous HA, Khamiss OA. 2019. Community structure and fibrolytic activities of anaerobic rumen fungi in dromedary camels. J Basic Microbiol 59: 101-110. DOI: 10.1002/jobm.201800323.
Raffrenato E, Fievisohn R, Cotanch KW, Grant RJ, Chase LE, Van Amburgh ME. 2016. Effect of lignin linkages with other plant cell wall components on in vitro and in vivo neutral detergent fiber digestibility and rate digestion of grass forages. J Dairy Sci 100: 8119-8131. DOI: 10.3168/jds.2016-12364.
Ramaiyulis, Zain M, Ningrat RWS, Warly L. 2018. Interaction effect of cattle feed supplement and concentrate on rumen fermentability and fiber fraction degradability in low-quality forage. Scholar J Agric Vet Sci 5: 337-342. DOI: 10.21276/sjavs.2018.5.6.9.
Shelke SK, Chhabra A, Puniya AK, Sehgal JP. 2009. In vitro degradation of sugarcane bagasse based ruminant rations using anaerobic fungi. Ann Microbiol 59:415-418. DOI: 10.1007/BF03175124.
Sirohi SK, Choudhury PK, Dagar SS, Puniya AK, Singh D. 2013. Isolation, characterization and fibre degradation potential of anaerobic rumen fungi from cattle. Ann Microbiol 63: 1187-1194. DOI: 10.1007/s13213-012-0577-6.
Solomon KV, Haitjema CH, Henske JK, Gilmore SP, Borges-Rivera D, Lipzen A, Brewer HM, Purvine SO, Wright AT, Theodorou MK, Grigoriev IV, Regev A, Thompson DA, O’Malley MA. 2016. Early-branching gut fungi posses a large, comprehensive array of biomass-degrading enzymes. Science 351: 1192-1195. DOI: 10.1126/science.aad1431.
Thareja A, Puniya AK, Goel G, Nagpal R, Sehgal JP, Singh PK, Singh K. 2006. In vitro degradation of wheat straw by anaerobic fungi from small ruminants. Arch Anim Nut 60: 412-417. DOI: 10.1080/17450390600884443.
Tilley JMA, Terry RA. 1963. A two-stage technique for the in vitro digestion of forage crops. Grass and Forage Science 18:104-111. DOI: 10.1111/j.1365-2494.1963.tb00335.x.
Trisnadewi AAAS, Cakra IGLO. 2020. Physical characteristics, nutritional qualities and in vitro digestibility of silage from various sources fiber. Pak J Nutr 19: 166-171. DOI: 10.3923/pjn.2020.166.171.
Vahidi MF,Gharechahi J, Behmanesh M, Ding XZ, Han JL, Hosseini Salekdeh G. 2021. Diversity of microbes colonizing forages of varying lignocellulose properties in the sheep rumen. PeerJ 9: e10463. DOI: 10.7717/peerj.10463.
Vaidya JD, van den Bogert B, Edwards JE, Boekhorst J, van Gastelen S, Saccenti E, Plugge CM, Smidt H. 2018. The effect of DNA extraction methods on observed microbial communities from fibrous and liquid rumen fractions of dairy cows. Front Microbiol 9:92-107. DOI: 10.3389/fmicb.2018.00092.
Van Soest PJ, Robertson JB , Lewis BA. 1991. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J Dairy Sci 74: 3583-3597. DOI: 10.3168/jds.S0022-0302(91)78551-2.
Wang D, Zhao C, Liu S, Zhang T, Yao J, Cao Y. 2019. Effects of Piromyces sp. CN6 CGMCC 14449 on fermentation quality, nutrient composition and the in vitro degradation rate whole crop maize silage. AMB Express 9: 1-8. DOI: 10.1186/s13568-019-0846-x.
Wang HC, Chen YC, Hseu RS. 2014. Purification and characterization of cellulolytic multienzyme complex produced by Neocallimastix patriciarum J11. Biochem Biophys Res Commun 451: 190-195. DOI: 10.1016/j.bbrc.2014.07.088.
Wang Y, McAllister TA, Lora JH. 2017. Effects of purified lignin on in vitro rumen metabolism and growth performance of feedlot cattle. AJAS 30: 392–399. DOI: 10.5713/ajas.16.0317.
Wei YQ, Long RJ, Yang H, Yang HJ, Shen XH, Shi RF, Wang ZY, Du JG, Qi XJ, Ye QH. 2016. Fiber degradation potential of natural co-cultures of Neocallimastix frontalis and Methanobrevibacter ruminantium isolated from yaks (Bos grunniens) grazing on the Ginghai Tibetan Plateu. Anaerobe 39: 158-164. DOI: 10.1016/j.anaerobe.2016.03.005.
Yanuartono, Purnamaningsih H, Indarjulianto S, Nururrozi A. 2017. Potensi jerami sebagai pakan ternak ruminansia. JIIP 27: 40-62. DOI: 10.21776/ub.jiip.2017.027.01.05.
Youssef NH, Couger MB, Struchtemeyer CG, Liggenstoffer AS, Prade RA, Najar FZ, Atiyeh HK, Wilkins M R, Elshahed MS. 2013. The genome of the anaerobic fungus Orpinomyces sp. strain C1A reveals the unique evolutionary history of a remarkable plant biomass degrader. Appl Environ Microbiol 79: 4620–4634. DOI: 10.1128/AEM.00821-13.
Yun J, Wei L, Li W, Gong D, Qin H, Feng X, Li G, Ling Z, Wang P, Yin B. 2021. Isolating high antimicrobial ability lignin from bamboo kraft lignin by organosolv fractionation. Front. Bioeng. Biotechnol. 9: 683796-683806. DOI: 10.3389/fbioe.2021.683796.
Zhang R, Zhu W, Zhu W, Liu J, Mao S. 2014. Effect of dietary forage sources on rumen microbiota, rumen fermentation and biogenic amines in dairy cows. J Sci Food Agric 94: 1886-1895. DOI: 10.1002/jsfa.6508.
Zhang Z, Wang S, Wang M, Shahzad K, Zhang X, Qi R, Shi L. 2020. Effects of urtica cannabina to leymus chinensis ratios on ruminal microorganisms and fiber degradation in vitro. Animals (Basel) 10: 335-347. DOI: 10.3390/ani10020335.
Zhao J, Bai Y, Zhang G, Liu L, Lai C. 2020. Relationship between dietary fiber fermentation and volatile fatty acids concentration in growing pigs. Animals 10: 263-276. DOI: 10.3390/ani10020263.
Zhong H, Zhou J, Abdelrahman M, Xu H, Wu Z, Cui L, Ma Z, Yang L, Li X. 2021. The effect of lignin composition on ruminal fiber fractions degradation from different roughage sources in water buffalo (Bubalus bubalis). Agriculture 11: 1015-1029. DOI: 10.3390/agriculture11101015.

Most read articles by the same author(s)

1 2 > >>