Isolation and identification of Actinomycetes with antifungal activity from karts ecosystem in Maros-Pangkep, Indonesia

##plugins.themes.bootstrap3.article.main##

HERLINA RANTE
MARIANTI A. MANGGAU
GEMINI ALAM
ERMINA PAKKI
ANDI EVI ERVIANI
NUR HAFIDAH
HAMDAYANI LANCE ABIDIN
ALIMUDDIN ALI

Abstract

Abstract. Rante H, Manggau MA, Alam G, Pakki E, Erviani AE, Hafidah N, Abidin HL, Ali A. 2024. Isolation and identification of Actinomycetes with antifungal activity from karts ecosystem in Maros-Pangkep, Indonesia. Biodiversitas 25: 458-464. Actinomycetes have yielded various biologically active secondary compounds with intriguing properties like antimicrobial, antiviral, and anticancer effects. This research aimed to isolate, identify, and screen the antifungi from soil environmental samples collected from the karst ecosystem in Maros-Pangkep, Indonesia. The active isolate is then fermented for the production of secondary metabolites. The fermentation process uses an M1 medium under agitated conditions at 150 rpm for 12 days. The isolate Actinomycetes were identified based on sequence gen 16S rRNA. Screening of antifungal activity was carried out against Candida albicans ATCC 10231 and Aspergillus niger ATCC 16404 by antagonistic test. The diffusion method was applied using the paper disc to assess the antifungal activity. The result revealed that 8 isolates were purified from the soil samples collected. From the 8 isolates of Actinomycetes obtained, two Actinomycetes exhibited antifungal activities in the screening methods, namely isolates with code B11 and B 17. The crude extract of isolate B11 was active against C. albicans and A. niger at concentrations of 2 mg/paper disc, 1.5 mg/paper disc, and 0.75 mg/paper disc. Furthermore, isolate B17 was found to be only active against C. albicans. The phylogenetic analysis of the 16S rRNA gene sequences indicated that B11 showed the highest similarity to Streptomyces tuirus strain NBRC 15617.

##plugins.themes.bootstrap3.article.details##

References
Belyagoubi L, Belyagoubi-Benhammou N, Jurado V, Dupont J, Lacoste S, Djebbah F, Ounadjela F, Benaissa S, Habi S, Abdelouahi DE, Saiz-Jimenez C. 2018. Antimicrobial activities of culturable microorganisms (Actinomycetes and fungi) isolated from Chaabe Cave, Algeria. Intl J Speleol 47 (2): 189-199. DOI: 10.5038/1827-806X.47.2.2148.
Barka EA, Vatsa P, Sanchez L, Gaveau-Vaillant N, Jacquard C, Klenk HP, Clément C, Ouhdouch Y, van Wezel GP. 2016. Taxonomy, physiology, and natural products of Actinobacteria. Microbiol Mol Biol Rev 80: 1-43. DOI: 10.1128/MMBR.00019-15.
Cheeptham N, Sadoway T, Rule D, Watson K, Moote P, Soliman LC, Azad N, Donkor KK, Horne D. 2013. Cure from the cave: Volcanic cave Actinomycetes and their potential in drug discovery. Intl J Speleol 42 (1): 35-47. DOI: 10.5038/1827-806X.42.1.5.
Clements R, Sodhi NS, Schilthuizen M, Ng PK. 2006. Limestone karsts of Southeast Asia: Imperiled arks of biodiversity. BioScience 56 (9): 733-742. DOI: 10.1641/0006-3568(2006)56[733:LKOSAI]2.0.CO;2.
De-Simeis, Serra S. 2021. Actinomycetes: A never-ending source of bioactive compounds-and overview on antibiotics production. Antibiotics 10 (5): 483. DOI: 10.3390/antibiotics10050483.
Dhanasekaran D, Thajuddin N, Panneerselvam A. 2008. Distribution and ecobiology of antagonistic Streptomycetes from agriculture and coastal soil in Tamil Nadu, India. J Cult Collect 6: 10-20.
Fang BZ, Hua ZS, Han MX, Zhang ZT, Wang YH, Yang ZW, Zhang WQ, Xiao M, Li WJ. 2017. Nonomuraea cavernae sp. nov., a novel actinobacterium isolated from a karst cave sample. Intl J Syst Evol Microbiol 67 (11): 4692-4697. DOI: 10.1099/ijsem.0.002364.
Gupta P, Imchen M, Kumavath R. Exploration and characterization of melanin pigment produced by actinomycetes. In: Dharumadurai D (eds). Methods in Actinobacteriology. Springer Protocols Handbooks, Humana, New York (USA).
Hamedi J, Kafshnouchi M, Ranjbaran M. 2019. A study on actinobacterial diversity of Hampoeil cave and screening of their biological activities. Saudi J Biol Sci 26 (7): 1587-1595. DOI: 10.1016/j.sjbs.2018.10.010.
Jaroszewicz W, Biela?ska P, Lubomska D, Kosznik-Kwa?nicka K, Golec P, Grabowski ?, Wieczerzak E, Dró?d? W, Gaffke L, Pierzynowska K, W?grzyn G, W?grzyn A. 2021. Antibacterial, antifungal and anticancer activities of compounds produced by newly isolated Streptomyces strains from the Szczelina Chocho?owska Cave (Tatra Mountains, Poland). Antibiotics 10 (10): 1212. DOI: 10.3390/antibiotics10101212.
Keikha N, Ayatollahi Mousavi SA, Shahidi Bonjar GH, Fouladi B, Izadi AR. 2015. In vitro antifungal activities of Actinomyces species isolated from soil samples against Trichophyton mentagrophytes. Curr Med Mycol 1 (3): 33-38. DOI: 10.18869/acadpub.cmm.1.3.33.
Ko RKT. 2001. Maros-Pangkep Karst Area, its added value in the non-mining field towards the protection and utilisation of Maros-Pangkep karst area as a world heritage in the era of regional autonomy. Prosiding Simposium Karst Maros-Pangkep. Badan Pengendalian Dampak Lingkungan Regional III, Makassar.
Ková? ?. 2018. Caves as oligotrophic ecosystems. In: Moldovan, O., Ková? ?, Halse S (eds). Cave Ecology. Springer, Cham, Switzerland. DOI: 10.1007/978-3-319-98852-8_13.
Lacey J. 1997. Actinomycetes in compost. Annals Agr Environ Med 4: 113.
Lavoie KH, Northup DE, Barton HA. 2010. Microbial-mineral interactions; geomicrobiology in caves. Geomicrobiology 1: 21-25. DOI: 10.1201/b10193-2.
Lee N, Kim W, Hwang S, Lee Y, Cho S, Palsson B, Cho BK. 2020. Thirty complete Streptomyces genome sequences for mining novel secondary metabolite biosynthetic gene clusters. Sci Data 7 (1): 55. DOI: 10.1038/s41597-020-0395-9.
Long Y, Jiang J, Hu X, Zhou J, Hu J, Zhou S. 2019. Actinobacterial community in Shuanghe Cave using culture-dependent and -independent approaches. World J Microbiol Biotechnol 35 (10): 153. DOI: 10.1007/ s11274-019-2713-y.
Madigan MT, Martinko JM, Parker J. 2003. Brock Biology of microorganisms. 10ed. Pearson Education Inc., USA.
Mancuso G, Midiri A, Gerace E, Biondo C. 2021. Bacterial antibiotic resistance: The most critical pathogens. Pathogens 10 (10): 1310. DOI: 10.3390/pathogens10101310.
Mesrian DK, Purwaningtyas WE, Astuti RI, Hasan AEZ, Wahyudi AT. 2021. Methanol pigment extracts derived from two marine actinomycetes exhibit antibacterial and antioxidant activities. Biodiversitas 22: 4440-4447. DOI: 10.13057/biodiv/d221037.
Praptosuwiryo TN. 2021. Botanical inventory and rarity of the fern Genus Pteris in the karst forests of Bantimurung-Bulusaraung National Park, Sulawesi-Indonesia. IOP Conf Ser: Earth Environ Sci 762: 012016. DOI: 10.1088/1755-1315/762/1/012016.
Rangseekaew P, Pathom-Aree W. 2019. Cave actinobacteria as producers of bioactive metabolites. Front Microbiol 10: 387. DOI: 10.3389/fmicb.2019.00387.
Rante H, Alam G, Usmar, Zahra S, Kurniawati A, Ali A. 2022. Antimicrobial activity of Streptomyces spp. sponge-associated isolated from Samalona Island of South Sulawesi, Indonesia. Biodiversitas 23 (3): 1392-1398. DOI: 10.13057/biodiv/d230325.
Roncarati D, Scarlato V, Vannini A. 2022. Targeting of regulators as a promising approach in the search for novel antimicrobial agents. Microorganisms 10: 185. DOI: 10.3390/microorganisms10010185.
Sah SN, Lekhak B. 2017. Screening of antibioticproducing Actinomycetes of the soil of Siraha, Nepal. Himalay J Sci Technol 1: 20-25. DOI: 10.3126/hijost.v1i0.25817.
Sah SN, Majhi R, Regmi S, Ghimire A, Biswas B, Yadaf LP, Sah RK, Shah PK. 2021. Fermentation and extraction of antibacterial metabolite using Streptomyces Spp. isolated from Taplejung Nepal. J Institute Sci Technol 26 (1): 8-15. DOI: 10.3126/jist.v26i1.37808.
Selvin J, Shanmughapriya S, Gandhimathi R, Seghal Kiran G, Rajeetha Ravji T, Natarajaseenivasan K, Hema TA. 2009. Optimization and production of novel antimicrobial agents from sponge associated marine Actinomycetes nocardiopsis dassonvillei MAD08. Appl Microbial Biotecnol 83: 435-445. DOI: 10.1007/s00253-009-1878-y.
Sharma M, Dangi P, Choudhary M. 2014. Actinomycetes: Source, identification, and their applications. Intl J Curr Microbiol App Sci 3 (2): 801-832. DOI: 10.20546/ijcmas.2017.602.089.
Song J, Lee S-C, Kang J-W, Baek H-J, Suh J-W. 2004. Phylogenetic analysis of Streptomyces spp. isolated from potato scab lesions in Korea on the basis of 16S rRNA gene and 16S-23S rDNA internally transcribed spacer sequences. Intl J Syst Evol Microbiol 54: 203-209. DOI: 10.1099/ijs.0.02624-0.
Song Q, Huang Y, Yang H. 2012. Optimization of fermentation conditions for antibiotic production by Actinomycetes YJ1 strain against Sclerotinia sclerotiorum. J Agric Sci 4 (7): 95-102. DOI: 10.5539/jas.v4n7p95.
Syiemiong D, Jha DK. 2019. Antibacterial potential of actinobacteria from a limestone mining site in Meghalaya, India. J Pure Appl Microbiol 13 (2): 789-802. DOI: 10.22207/JPAM.13.2.14.
Tüfekci EF, Uzun Ü, Sa?lam Ertunga N, Biber A, H?d?ro?lu ?A, Tekk?l?ç ?, Altay B, K?l?ç AO. 2023. Investigation of antimicrobial activities and 16S rRNA sequences of Actinomycetes isolated from Karst Caves in the Eastern Black Sea Region of Türkiye. Kahramanmara? Sütçü ?mam Üniversitesi Tar?m ve Do?a Dergisi 26 (6): 1277-1290. DOI: 10.18016/ksutarimdoga.vi.1226184.
Yusel S, Yamac M. 2010. Selection of Streptomyces isolates from Turkish Karstic Caves against antibiotic resistant microorganisms. Pak J Pharm Sci 23 (1): 1-6.
Zhang W, Li Zhiyong, Miao X, Zhang F. 2009. The screening of antimicrobial bacteria with diverse novel Nonrobosomal Peptide Synthetase (NRPS) gene from South China Sea Sponge. Mar Biotechnol 11: 346-355. DOI: 10.1007/s10126-008-9148-z.
Zymo Research. 2023. Quick-DNA MagBead Plus Kit: Rapid High-Throughput Method for DNA Isolation from Any Sample. https://files.zymoresearch.com/protocols/_d4081_d4082_quick-dna_magbead_plus_kit.pdf.