Ant communities and their trophobionts shape the incidence of pests and diseases in Indonesia’s coffee agroforestry system

##plugins.themes.bootstrap3.article.main##

FAIZ NASHIRUDDIN MUHAMMAD
https://orcid.org/0000-0002-4616-3273
AKHMAD RIZALI
BAMBANG TRI RAHARDJO

Abstract

Abstract. Muhammad FN, Rizali A, Rahardjo BT. 2024. Ant communities and their trophobionts shape the incidence of pests and diseases in Indonesia’s coffee agroforestry system. Biodiversitas 25: 1127-1134. Ants play various roles in a coffee agroecosystem, and their presence may impact biological control in coffee plantations. Despite the pantropical economic importance of coffee, most research is focused on the Americas. This study investigates how ant communities and their trophobionts shape the incidences of pests and diseases in the Indonesian shade coffee agroecosystem. Three 30 m x 30 m plots consisting of a total of 256 coffee plants were observed from January to March 2022. Ant communities and their trophobiont were observed using three methods: visual, tuna bait, and live bait. The ants found were classified into dominant and non-dominant based on their nesting behavior and dominance in the bait trap. Pest damage and disease intensity observation were also conducted three times. Generalized linear models were used to test the relationships between ant, hemipteran, coffee berry borer, twig borer damage and leaf rust disease intensity. Twenty-one species of ants were found, and five of them were categorized as dominant ants. Ants correlate coffee pest damage and disease intensity, their hemipteran trophobionts, or both. Dolichoderus thoracicus ant positively correlated with all trophobiont hemipteran and negatively correlated with twig borer damage. Technomyrmex albipes positively correlated with aphids but negatively with flatids. Meanwhile, Tetraponera sp.1 ant only positively correlated with flatids. In trophobiont hemipteran group, all except aphids positively correlated with coffee pests and disease. Scale insect Coccus viridis positively correlated with coffee leaf rust and twig borer infestation intensity, while flatid presence even positively correlated with all coffee plant pest and disease intensity. Indirectly, ants may reduce coffee pests and diseases through hemipteran suppression. The results suggest that the interaction of ants and their trophobiont hemipteran can act as a biological control agent for coffee pests and diseases.

##plugins.themes.bootstrap3.article.details##

References
Alves da Silva S, Fonseca Alvarenga Pereira RG, Azevedo Lira N de, Micotti da Glória E, Chalfoun SM, Batista LR. 2020. Fungi associated to beans infested with coffee berry borer and the risk of ochratoxin A. Food Cont 113: 107204. DOI: 10.1016/j.foodcont.2020.107204.
Angulo E, Hoffmann BD, Ballesteros-Mejia L, Taheri A, Balzani P, Bang A, Renault D, Cordonier M, Bellard C, Diagne C, Ahmed DA, Watari Y, Courchamp F. 2022. Economic costs of invasive alien ants worldwide. Biol Invasions 24: 2041-2060. DOI: 10.1007/s10530-022-02791-w.
Anjos DV, Tena A, Viana-Junior AB, Carvalho RL, Torezan-Silingardi H, Del-Claro K, Perfecto I. 2022. The effects of ants on pest control: a meta-analysis. Proc R Soc B Biol Sci 289. DOI: 10.1098/rspb.2022.1316.
Bobadilla MF de, Wiechen R Van, Gort G, Poelman EH. 2022. Plasticity in induced resistance to sequential attack by multiple herbivores in Brassica nigra. Oecologia 198: 11-20. DOI: 10.1007/s00442-021-05043-1.
BPS (Badan Pusat Statistik) Kabupaten Malang. 2022. Iklim. https://malangkab.bps.go.id/subject/154/iklim.html. [Indonesian]
BPS (Badan Pusat Statistik). 2021. Statistik Kopi Indonesia 2020. BPS-Statistic Indonesia, Jakarta. [Indonesian]
Bujan J, Yanoviak SP. 2022. Behavioral response to heat stress of twig-nesting canopy ants. Oecologia 198: 947-955. DOI: 10.1007/s00442-022-05143-6.
Diamé L, Rey JY, Vayssières JF, Grechi I, Chailleux A, Diarra K. 2018. Ants: Major functional elements in fruit agro-ecosystems and biological control agents. Sustain 10. DOI: 10.3390/su10010023.
Egonyu JP, Baguma J, Ogari I, Ahumuza G, Kyamanywa S, kucel P, Kagezi GH, Erbaugh M, Phiri N, Ritchie BJ, Wagoire WW. 2015. The formicid ant, Plagiolepis sp., as a predator of the coffee twig borer, Xylosandrus compactus. Biol Control 91: 42-46. DOI: 10.1016/j.biocontrol.2015.07.011.
Fernandes EF, Castro MM De, Barbosa BC, Prezoto F. 2014. Variation in nesting behavior of the arboreal ant Camponotus sericeiventris (Hymenoptera: Formicidae). Fla Entomol 97: 1237-1239. DOI: 10.1653/024.097.0332.
Giannetti D, Schifani E, Gugliuzzo A, Zappalà L, Biondi A, Grasso DA. 2022. Native European ants can discourage host colonization and reduce reproductive success of the invasive ambrosia beetle Xylosandrus compactus. Biol Control 174: 105032. DOI: 10.1016/j.biocontrol.2022.105032.
Gonthier DJ, Ennis KK, Philpott SM, Vandermeer J, Perfecto I. 2013. Ants defend coffee from berry borer colonization. BioControl 58: 815-20. DOI: 10.1007/s10526-013-9541-z.
Huber D, Römheld V, Weinmann M. 2011. Relationship between nutrition, plant diseases and pests. In: Marschner P (ed). Marschner's Mineral Nutrition of Higher Plants: Third Edition. Elsevier Inc. DOI: 10.1016/B978-0-12-384905-2.00010-8.
Husni H, Sapdi S, Jauharlina J, Rusdy A, Mulyadi E. 2019. Coffee berry borer (Hypothenemus hampei Ferr.) attacks in organic and conventional arabica coffee plantations. In: Manunta P (ed). Proceedings of the Proceeding of the First International Graduate Conference (IGC) on Innovation, Creativity, Digital, & Technopreneurship for Sustainable Development in Conjunction with The 6th Roundtable for Indonesian Entrepreneurship Educators 2018. DOI: 10.4108/eai.3-10-2018.2284373.
Indriati G, Khaerati K, Sobari I, Pranowo D. 2017. Attack intensity of twig borer Xylosandrus compactus (Coleoptera: Curculionidae) on four robusta coffee clones. Jurnal Tanaman Industri dan Penyegar 4: 99. DOI: 10.21082/jtidp.v4n2.2017.p99-106. [Indonesian]
Jackson D, Skillman J, Vandermeer J. 2012. Indirect biological control of the coffee leaf rust, Hemileia vastatrix, by the entomogenous fungus Lecanicillium lecanii in a complex coffee agroecosystem. Biol Control 61: 89-97. DOI: 10.1016/j.biocontrol.2012.01.004
Jackson D, Zemenick AT, Malloure B, Quandt CA, James TY. 2016. Fine-scale spatial genetic structure of a fungal parasite of coffee scale insects. J Invertebr Pathol 139: 34-41. DOI: 10.1016/j.jip.2016.07.007.
Jha S, Bacon CM, Philpott SM, Ernesto Méndez V, Läderach P, Rice RA. 2014. Shade coffee: Update on a disappearing refuge for biodiversity. Bioscience 64: 416-28. DOI: 10.1093/biosci/biu038.
Johnson MA, Ruiz-Diaz CP, Manoukis NC, Rodrigues JCV. 2020. Coffee berry borer (Hypothenemus hampei), a global pest of coffee: Perspectives from historical and recent invasions, and future priorities. Insects 11: 1-35. DOI: 10.3390/insects11120882.
Júnior JH, Zambolim L, Aucique-Pérez CE, Resende RS, Rodrigues FA. 2015. Photosynthetic and antioxidative alterations in coffee leaves caused by epoxiconazole and pyraclostrobin sprays and Hemileia vastatrix infection. Pestic Biochem Physiol 123: 31-39. DOI: 10.1016/j.pestbp.2015.01.016.
Lessard J-P, Stuble KL, Sanders NJ. 2020. Do dominant ants affect secondary productivity, behavior and diversity in a guild of woodland ants?. Diversity 12: 1-17. DOI: 10.3390/d12120460.
Merle I, Pico J, Granados E, Boudrot A, Tixier P, Virginio Filho E de M, Cilas C, Avelino J. 2020. Unraveling the complexity of coffee leaf rust behavior and development in different coffea arabica agroecosystems. Phytopathol 110: 418-27. DOI: 10.1094/PHYTO-03-19-0094-R.
Morris JR, Estelí J-S, Philpott SM, Perfecto I. 2018. Ant-mediated (Hymenoptera: Formicidae) biological control of the coffee berry borer: diversity, ecological complexity, and conservation biocontrol. Myrmecological News 10: 4136. DOI: 10.25849/myrmecol.news_026:001
Morris JR, Vandermeer J, Perfecto I. 2015. A keystone ant species provides robust biological control of the coffee berry borer under varying pest densities. PLoS One 10: e0142850. DOI: 10.1371/journal.pone.0142850.
Mubin N, Audia BH, Andina KS, Diyasti F. 2023. Survey of coffee damage by coffee berry borer (Hypothenemus hampei Ferr.) attack in Purwabakti, Pamijahan - Bogor. IOP Conf Ser Earth Environ Sci 1208: 012012. DOI: 10.1088/1755-1315/1208/1/012012.
Muhammad FN, Rizali A, Rahardjo BT. 2022. Diversity and species composition of ants at coffee agroforestry systems in East Java, Indonesia: Effect of habitat condition and landscape composition. Biodiversitas 23 (7): 3318-3326. DOI: 10.13057/biodiv/d230702.
Nazarreta R, Bukhori D, Hashimoto Y, Hidayat P, Scheu S, Drascher J. 2021. A Guide to the Ants of Jambi (Sumatera, Indonesia). Identification Key to Ant Genera and Images of the EfforTS Colektion. DOI: 10.14203/press.273.
Nelson AS, Mooney KA. 2022. The evolution and ecology of interactions between ants and honeydew-producing hemipteran insects. Annu Rev Ecol Evol Syst 53: 379-402. DOI: 10.1146/annurev-ecolsys-102220-014840.
Offenberg J, Damgaard C. 2019. Ants suppressing plant pathogens: a review. Oikos 128: 1691-1703. DOI: 10.1111/oik.06744.
Offenberg J. 2015. Review: Ants as tools in sustainable agriculture. J Appl Ecol 52: 1197-1205. DOI: 10.1111/1365-2664.12496.
Oudenhove L van, Cerdá X, Bernstein C. 2018. Dominance-discovery and discovery-exploitation trade-offs promote diversity in ant communities. PLoS One 13: e0209596. DOI: 10.1371/journal.pone.0209596.
Pérez-Rodríguez J, Pekas A, Tena A, Wäckers FL. 2021. Sugar provisioning for ants enhances biological control of mealybugs in citrus. Biol Control 157: 104573. DOI: 10.1016/j.biocontrol.2021.104573.
Perfecto I, Vandermeer J, Philpott SM. 2014. Complex ecological interactions in the coffee agroecosystem. Annu Rev Ecol Evol Syst 45: 137-58. DOI: 10.1146/annurev-ecolsys-120213-091923.
Philpott SM, Armbrecht I. 2006. Biodiversity in tropical agroforests and the ecological role of ants and ant diversity in predatory function. Ecol Entomol 31: 369-77. DOI: 10.1111/j.1365-2311.2006.00793.x
Prastowo E, Erdiansyah NP, Arimarsetiowati R. 2019. Leaf mineral composition of coffee infected by a Hemileia vastatrix fungus in Bondowoso, East Java. Pelita Perkebunan 35: 12-21. DOI: 10.22302/iccri.jur.pelitaperkebunan.v35i1.345. [Indonesian]
R Core Team. 2023. A languange and environment for statistical computing. R Found Stat Comput 1: 409.
Rizali A, Tscharntke T, Buchori D, Clough Y. 2018. Separating effects of species identity and species richness on predation, pathogen dissemination and resistance to invasive species in tropical ant communities. Agric For Entomol 20: 122-30. DOI: 10.1111/afe.12236.
Ronque MUV, Fourcassié V, Oliveira PS. 2018. Ecology and field biology of two dominant Camponotus ants (Hymenoptera: Formicidae) in the Brazilian savannah. J Nat Hist 52: 237-52. DOI: 10.1080/00222933.2017.1420833.
Sanchez JA, Carrasco-Ortiz A, Lopez-Gallego E, La-Spina M. 2020. Ants reduce the density of Cacopsylla pyri in Mediterranean pear orchards. Myrmecological News 30: 93-102. DOI: 10.25849/myrmecol.news_030:093
Sharaf MR, Dhafer HM Al, Aldawood AS. 2018. Review of the ant genus Technomyrmex Mayr, 1872 in the Arabian Peninsula (Hymenoptera, Formicidae). Zookeys 780: 35-59. DOI: 10.3897/zookeys.780.26272.
Statista. 2022. Coffee export volumes worldwide in January 2022, by leading countries. 2022. https://www.statista.com/
Talhinhas P, Batista D, Diniz I, Vieira A, Silva DN, Loureiro A, Tavares S, Pereira AP, Azinheira HG, Guerra-Guimarães L, Várzea V, Silva MDC. 2017. The coffee leaf rust pathogen Hemileia vastatrix: one and a half centuries around the tropics. Mol Plant Pathol 18: 1039-51. DOI: 10.1111/mpp.12512.
Tarno H, Septia ED, Aini LQ. 2016. Microbial community associated with ambrosia beetle, Euplatypus parallelus on Sonokembang, Pterocarpus indicus in Malang. Agrivita J Agric Sci 38. DOI: 10.17503/agrivita.v38i3.628.
Túler AC, Valbon WR, Rodrigues HS, Noia LR, Santos LML, Fogaça I, Rondelli VM, Verdin FAC. 2019. Black twig borer, Xylosandrus compactus (Eichhoff), as a potential threat to the coffee production. Rev Ciencias Agrícolas 36: 9-20. DOI: 10.22267/rcia.1936E.102.
Vandermeer J, Perfecto I, Philpott S. 2010. Ecological complexity and pest control in organic coffee production: Uncovering an autonomous ecosystem service. Bioscience 60: 527-37. DOI: 10.1525/bio.2010.60.7.8.
Ward PS. 2022. The ant genus Tetraponera (Hymenoptera: Formicidae) in the Afrotropical region: taxonomic review and key to species. Zootaxa 5102: 1-70. DOI: 10.11646/zootaxa.5102.1.1.
Zewdie B, Tack AJM, Ayalew B, Adugna G, Nemomissa S, Hylander K. 2021. Temporal dynamics and biocontrol potential of a hyperparasite on coffee leaf rust across a landscape in Arabica coffee’s native range. Agric Ecosyst Environ 311: 1-10. DOI: 10.1016/j.agee.2021.107297.

Most read articles by the same author(s)

1 2 3 > >>