Characterization of rice varieties under salinity level and the response of defense-related genes during the germination stage

##plugins.themes.bootstrap3.article.main##

SRI HARTATIK
NOOR ROZZITA
SATRIYO WIBOWO
EVIYANTI CHOIRUNNISA
SAFA ADISTA SEKAR SAKANTI
AGUNG NUGROHO PUSPITO
MOHAMMAD UBAIDILLAH

Abstract

Abstract. Hartatik S, Rozzita N, Wibowo S, Choirunnisa E, Sakanti SAS, Puspito AN, Ubaidillah M. 2024. Characterization of rice varieties under salinity level and the response of defense-related genes during the germination stage. Biodiversitas 25: 1536-1543. Climate change causes sea level rise, leading to an increase in soil salinity. In the germination phase, rice plants are more sensitive to salinity stress. Under salinity stress, plants produce an increased content of Reactive Oxygen Species (ROS). Local rice (Oryza sativa) has complex gene properties to survive in salt-stress conditions. This research aims to study the potential of salt tolerance at the germination stage and provide a molecular analysis based on antioxidant genes in local rice. This study uses a factorial completely randomized design. The first factor is rice varieties (IR64, Silaun, Ime Buci, Me Klan, Me Likan, Me Meak, Me Taek, and Umak Klete), while the second factor is the salt treatments (0, 100, 200, 300, 400, 500, and 600 mM NaCl). The results showed that Ime Buci became the most tolerant variety to salinity stress due to its ability to survive and germinate at the highest NaCl concentration (400 mM NaCl). In addition, the H2O2 content and Malondialdehyde (MDA) values of the Ime Buci variety were lower compared to the IR64 variety. The expression of antioxidant genes (Mn-SOD, Cu/Zn SOD, Cytosolic APX, OsAPX1, CAT, OsCATA, and GPOD) was used as observational variables in this study. The results of antioxidant gene expression showed that the Ime Buci variety activated genes more than IR64 variety based on real-time PCR. However, it still needs more investigation to analyze the potential of Ime Buci in salt conditions during the vegetative and generative stages to get more information about rice's mechanism in terms of tolerating stress conditions.

##plugins.themes.bootstrap3.article.details##

References
Chen HC, Cheng WH, Hong CY, Chang YS, Chang MC. 2018. The transcription factor OsbHLH035 mediates seed germination and enables seedling recovery from salt stress through ABA-dependent and ABA-independent pathways, respectively. Rice 11 (50): 1-17. DOI: 10.1186/s12284-018-0244-z.
Christou A, George M, Vasileios F. 2014. Systemic mitigation of salt stresss by hydrogen peroxide and sodium nitroprussidein strawberry plants via transcriptional regulation of enzymatic and non-enzymatic antioxidants. Environ Exper Bot 107: 46-54. DOI: 10.1016/j.envexpbot.2014.05.009.
Das K, Aryadeep R. 2014. Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Frontiers in Environmental Science, 2 (53): 1-13. DOI: 10.3389/fenvs.2014.00053.
Davletova S, Rizhsky L, Liang H, Shengqiang Z, Oliver DJ, Coutu J, Shulaev V, Schlauch K, Mittler R. 2005. Cytosolic ascorbate peroxidase 1 is a central component of the reactive oxygen gene network of arabidopsis. The Plant Cell 17: 268-281. DOI: 10.1105/tpc.104.026971.
Duan Y, H. Zheng H, Wen D, Qu J, Cui C, Li J, Wang H, Liu L, Yang Y, Jia,W, Xin S, Li, Zou D. 2022. Identification of candidate genes for salt tolerance at the germination stage in japonica rice by genome-wide. Agriculture 12 (10): 1-15. DOI: 10.3390/agriculture12101588.
Ergul BK. 2016. The importance of antioxidants which play the role in cellular response against oxidative/nitrosative stress: current state. Nutrition 15 (71): 1-22. DOI: 10.1186/s12937-016-0186-5.
Eswar, D, Karuppusamy R, Chellamuthu S. 2021. Drivers of soil salinity and their correlation with climate change. Current Opinion in Environmental Sustainability 50: 310-318. DOI: 10.1016/j.cosust.2020.10.015.
Habib N, Ali Q, Ali S, May B. 2020. Use of nitric oxide and hydrogen peroxide for better yield of wheat (Triticum aestivum L.) under water deficit conditions: growth, osmoregulation, and antioxidative defense mechanism. Plants 9 (285): 1-24. DOI: 10.3390/plants9020285.
Hakim MA, Begum ASJ, Hanafi MM, Ismail MR, Selamat A. 2010. Effect of salt stresss on germination and early seedling growth of rice. African Journal of Biotechnology 9 (13):11-18. DOI: 10.5897/AJB09.1526.
Hasanuzzaman M, Borhannuddin Bhuyan MHM, Zulfiqar F, Raza A, Mohsin SM, Mahud JA, Fujita M, Fotopoulos V. 2020. Reactive oxygen species and antioxidant defense in plants under abiotic stresss: revisiting the crucial role of a universal defense regulator. Antioxidants 9 (8): 681. DOI: 10.3390/antiox9080681.
He Y, Yang B, He Y, Zhan C, Cheng Y, Zhang J, Zhang H, Cheng J, Wang Z. 2019. A quantitative trait locus, qSE3, promotes seed germination and seedling establishment under salinity stress in rice. The Plant Journal 97: 1089-1104. DOI: 10.1111/tpj.14181.
Hossen MS, Karim MF, Fujita M, Borhannuddin Bhuyan MHM, Nahar K, Masud AAC, Mahmud JA, Hasanuzzaman M. 2022. Comparative physiology of indica and japonica rice under salinity and drought stress: An intrinsic study on osmotic adjustment, oxidative stress, antioxidant defense and methylglyoxal detoxification. Stresses 2 (2): 156–178. DOI: 10.3390/stresses2020012.
Imran QM, Falak N, Hussain A, Mun BG, Yun BW. 2021. Abiotic stress in plants; stress perception to molecular response and role of biotechnological tools in stress resistance. Agronomy 11 (8): 1-20. DOI: 10.3390/agronomy11081579.
Isayenkov SV, Maathuis FJM. 2019. Plant salinity stress: many unanswered questions remain. Front Plant Sci 10 (80): 1-11. DOI: 10.3389/fpls.2019.00080.
Liu C, Mao B, Yuan D, Chu C, Duan M. 2022. Salt tolerance in rice: physiological response and molecular mechanisms. The Crop 10: 13-25. DOI: 10.1016/j.cj.2021.02.010.
Ma J, Du G, Li X, Zhang C, Guo J. 2015. A major locus controlling malondialdehyde content under water stress is associated with fusarium crown rot resistance in wheat. Mol Genet Genomics: 1-8. DOI: 10.1007/s00438-015-1053-3.
Martínez-Ballest MC, Egea-Gilabert C, Conesa E, Ochoa J, Vicente MJ, Franco JA, Bañon S, Martinez JJ, Fernández JA. 2020. The Importance of Ion Homeostasis and Nutrient Status in Seed Development and Germination. Agronomy 10 (4): 1-22. DOI: 10.3390/agronomy10040504.
Miller G, Suzuki N, Ciftci-Yilmaz S, Mitler R. 2010. Reactive oxygen species homeostasis and signaling during drought and salinity. Plant, Cell and Environment 33: 453-467. DOI: 10.1111/j.1365-3040.2009.02041.x.
Miller G, Shulaev V, Mittler R. 2008. Reactive oxygen signaling and abiotic stress. Physiologia Plantarum 133: 481-489. DOI: 10.1111/j.1399-3054.2008.01090.x.
Mittler R. 2002. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7: 405-410. DOI: 10.1016/s1360-1385(02)02312-9.
Morales M, Munné-Bosch S. 2019. Malondialdehyde: facts and artifacts. Plant Physiology 180: 1246–1250. DOI: 10.1104/pp.19.00405.
Muttaqien MI, Rahmawati D. 2019. Karakter kualitatif dan kuantitatif beberapa varietas padi (Oryza sativa L.) terhadap cekaman salinitas (NaCl). Applied Agricultural Sciences 3 (1): 42-53. DOI: 10.25047/agriprima.v3i1.94.
Nahar K, Hasanuzzaman M, Fujita M. 2016. Roles of Osmolytes in Plant Adaptation to Drought and Salinity. In: Iqbal N, Nazar R, Khan NA. Osmolytes and Plants Acclimation to Changing Environment: Emerging Omics Technologies. Springer, New Delhi.
Nasir NNNM, Khandaker MM, Mohd KS, Badaluddin NA, Osman N, Mat N. 2020. Effect of hydrogen peroxide on plant growth, photosynthesis, leaf histology and rubisco gene expression of the Ficus deltoidea Jack Var. deltoidea Jack. Plant Growth Regulation: 1-22. DOI: 10.1007/s00344-020-10243-9.
Niu L, Liao W. 2016. Hydrogen peroxide signaling in plant development and abiotic responses: crosstalk with nitric oxide and calcium. Plant Sci 7 (230):1-14. DOI: 10.3389/fpls.2016.00230.
Nurnaeimah N, Mat N, Mohd KS, Badaluddin NA, Yusoff N, Sajili MH, Mahmud K, Adnan AFM, Khandaker MM. 2020. The effects of hydrogen peroxide on plant growth, mineral accumulation, as well as biological and chemical properties of Ficus deltoidea. Agronomy 10 (599): 1-19. DOI: 10.3390/agronomy10040599.
Sachdev S, Ansari SA, Ansari MI, Fujita M, Hasanuzzaman M. 2021. Abiotic stress and reactive oxygen species: generation, signaling, and defense mechanisms. Antioxidants 10 (2): 1-37. DOI: 10.3390/antiox10020277.
Shahid MA, Sarkhosh A, Khan N, Balal RM, Ali S, Rossi L, Gómez C, Mattson N, Nasim W, Garcia-Sanchez F. 2020. Insights into the physiological and biochemical impacts of salt stress on plant growth and development. Agronomy 10 (7): 1-34. DOI: 10.3390/agronomy10070938.
Sharma P, Jha AB, Dubey RS, Pessarakli M. 2012. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. Botany: 1-26. DOI: 10.1155/2012/217037.
Sopandie D. 2014. Fisiologi Adaptasi Tanaman terhadap Cekaman Abiotik pada Agroekositem Tropika. IPB press. Bogor.
Sukarman S, Mulyani A, Purwanto S. 2018. Modifikasi metode evaluasi kesesuaian lahan berorientasi perubahan iklim. Jurnal Sumberdaya Lahan 12 (1): 1-11. DOI: 10.2018/jsdl.v12i1.8228.
Tulkova ?, Kabashnikova L. 2021. Malondialdehyde content in the leaves of smallleaved linden tilia cordata and Norway maple acer platanoides under the influence of volatile organic compounds. Plant Biosystems: 1-9. DOI: 10.1080/11263504.2021.1897701.
Wei X, Qiu J, Yong K, Fan J, Zhang Q, Hua H, Liu J, Wang Q, Olsen KM, Han B, Huang X. 2021. A quantitative genomics map of rice provides genetic insights and guides breeding. Nature Genetics 53 (2): 243-253. DOI: 10.1038/s41588-020-00769-9.
Yang Y, Guo Y. 2018. Elucidating the molecular mechanisms mediating plant salt-stresss responses. New Phytol 217: 523-539. DOI: 10.1111/nph.14920.
Zhang Y, Luan Q, Jiang J, Li Y. 2021. Prediction and utilization of malondialdehyde in exotic pine under drought stress using near-infrared spectroscopy. Front Plant Sci 12 (735275): 1-9. DOI: 10.3389/fpls.2021.735275.
Zhao M, Lin Y, Chen H. 2020. Improving nutritional quality of rice for human health. Theoretical and Applied Genetic 133: 1397-1413. DOI: 10.1007/s00122-019-03530-x.