Genetic, phenotypic, and agronomic diversity of arrowroot (Maranta arundinacea) across agroclimatic zones for environmental adaptation and conservation

##plugins.themes.bootstrap3.article.main##

KACUNG HARIYONO
LULUK NOVIANA
MOHAMMAD UBAIDILLAH
AGUNG SIH KURNIANTO
ROSE NOVITA SARI HANDOKO

Abstract

Abstract. Hariyono K, Noviana L, Ubaidillah M, Kurnianto AS, Handoko RNS. 2024. Genetic, phenotypic, and agronomic diversity of arrowroot (Maranta arundinacea) across agroclimatic zones for environmental adaptation and conservation. Biodiversitas 25: 3431-3441. Understanding the genetic and phenotypic diversity of crops like arrowroot is essential for developing sustainable agricultural practices and ensuring food security. This study, therefore, is of significant importance as it provides insights into how environmental factors influence trait variability, which can inform targeted conservation and agronomic strategies in the context of climate change. This study investigated the genetic, phenotypic, and agronomic diversity of arrowroot (Maranta arundinacea L.) across three agroclimatic zones in Jember District, East Java Province, Indonesia, with a focus on the impact of environmental factors on these traits. Sampling was conducted in Wuluhan, Sumbersari, and Arjasa subdistricts, covering 20 locations. Genetic analysis revealed that Arjasa presented the highest genetic diversity, with a median Genetics_Mean of 0.75 and an interquartile range (IQR) of 0.7-0.83, whereas Sumbersari and Wuluhan had median Genetics_Mean values of 0.8 and 0.8, respectively. Phenotypic diversity was also highest in Arjasa, with a Phenotypic_Mean of 0.83 (IQR: 0.78-0.86), whereas it was 0.8 in Sumbersari and 0.82 in Wuluhan. The quantitative traits presented less variability, with median Quantitative_Mean values of 0.22 in Arjasa, 0.19 in Sumbersari, and 0.21 in Wuluhan. The conservation priority index (CPI) was calculated, identifying Antirogo as the location with the highest CPI value of 0.440, indicating a high priority for conservation efforts. In contrast, Kebonsari had the lowest CPI value of 0.235. Principal component analysis (PCA) further highlighted the significant variability in genetic and phenotypic traits across sub-districts, particularly in Arjasa, where unique environmental conditions likely contribute to this diversity. The results emphasize the importance of targeted conservation strategies and agronomic practices to optimize the genetic and phenotypic potential of arrowroot, particularly in the face of environmental variability and global climate change.

##plugins.themes.bootstrap3.article.details##

References
Alam MS, Begum SN, Gupta R, Islam SN. 2014. Genetic diversity analysis of rice (Oryza sativa L.) landraces through RAPD markers. Intl J Agric Res Innov Technol 4: 77-87. DOI: 10.3329/ijarit.v4i1.21099.
BPS Jember [Badan Pusat Statistik]. 2024. Jumlah penduduk kabupaten jember hasil sensus penduduk tahun 1961 menurut desa. https:// jemberkab.bps.go.id/statictable/2015/03/12/56/jumlah-penduduk-kabupaten -jember-hasil-sensus-penduduk-tahun-1961-menurut-desa-.html. [Indonesian]
Bueren ETL van, Struik PC, van Eekeren N, Nuijten E. 2018. Towards resilience through systems-based plant breeding. A review. Agron Sustain Dev 38 (5): 42. DOI: 10.1007/s13593-018-0522-6.
Chevin LM, Hoffmann AA. 2017. Evolution of phenotypic plasticity in extreme environments. Philos Trans R Soc B Biol Sci 372 (1723): 20160138. DOI: 10.1098/rstb.2016.0138.
De Leon N, Jannink JL, Edwards JW, Kaeppler SM. 2016. Introduction to a special issue on genotype by environment interaction. Crop Sci 56 (5): 2081-2089. DOI: 10.2135/cropsci2016.07.0002in.
Desai P, Gajera B, Mankad M, Shah S, Patel A, Patil G, Narayanan S, Kumar N. 2015. Comparative assessment of genetic diversity among Indian bamboo genotypes using RAPD and ISSR markers. Mol Biol Rep 42 (8): 1265-1273. DOI: 10.1007/s11033-015-3867-9.
Deswina P, Priadi D. 2020. Development of arrowroot (Maranta arundinacea L.) as functional food based of local resource. IOP Conf Ser: Earth Environ Sci 439 (1): 012041. DOI: 10.1088/1755-1315/439/1/012041.
Fidianingsih I, Aryandono T, Widyarini S, Herwiyanti S, Sunarti. 2022. Arrowroot (Maranta arundinacea L.) as a new potential functional food: A scoping review. Intl Food Res J 29 (6): 1240-1255. DOI: 10.47836/ifrj.29.6.02.
Firoskhan N, Muthuswamy R. 2021. Review on Maranta arundinacea L. (Marantacea). Intl J Pharmacogn Pharm Res 3 (1): 1-4. DOI: 10.33545/26647168.2021.v3.i1a.37.
Forsman A. 2015. Rethinking phenotypic plasticity and its consequences for individuals, populations and species. Heredity (Edinb) 115 (4): 276-284. DOI: 10.1038/hdy.2014.92.
Gratani L. 2014. Plant phenotypic plasticity in response to environmental factors. Adv Bot 2014: 1-17. DOI: 10.1155/2014/208747.
Großkinsky DK, Svensgaard J, Christensen S, Roitsch T. 2015. Plant phenomics and the need for physiological phenotyping across scales to narrow the genotype-to-phenotype knowledge gap. J Exp Bot 66 (18): 5429-5440. DOI: 10.1093/jxb/erv345.
Guillaume T, Maranguit D, Murtilaksono K, Kuzyakov Y. 2016. Sensitivity and resistance of soil fertility indicators to land-use changes: New concept and examples from conversion of Indonesian rainforest to plantations. Ecol Indic 67: 49-57. DOI: 10.1016/j.ecolind.2016.02.039.
Huang X, Han B. 2014. Natural variations and genome-wide association studies in crop plants. Annu Rev Plant Biol 65: 531-551. DOI: 10.1146/annurev-arplant-050213-035715.
Jacques MM, Gumiere SJ, Gallichand J, Celicourt P, Gumiere T. 2020. Impacts of water stress severity and duration on potato photosynthetic activity and yields. Front Agron 2: 590312. DOI: 10.3389/fagro.2020.590312.
Kaushal N, Bhandari K, Siddique KHM, Nayyar H. 2016. Food crops face rising temperatures: An overview of responses, adaptive mechanisms, and approaches to improve heat tolerance. Cogent Food Agric 2 (1): 1134380. DOI: 10.1080/23311932.2015.1134380.
Korres NE, Norsworthy JK, Tehranchian P, Gitsopoulos TK, Loka DA, Oosterhuis DM, Gealy DR, Moss SR, Burgos NR, Miller MR, Palhano M. 2016. Cultivars to face climate change effects on crops and weeds. Agron Sustain Dev 36: 12. DOI: 10.1007/s13593-016-0350-5.
Koshariya AK. 2022. Climate-resilient crops: Breeding strategies for extreme weather conditions. Plant Sci Arch 7 (2): 1-3. DOI: 10.5147/PSA.2022.7.2.01.
Li Xin, Guo T, Mu Q, Li Xianran, Yu J. 2018. Genomic and environmental determinants and their interplay underlying phenotypic plasticity. Proc Natl Acad Sci USA 115 (26): 6679-6684. DOI: 10.1073/pnas.1718326115.
Liu X, Rahman T, Song C, Su B, Yang F, Yong T, Wu Y, Zhang C, Yang W. 2017. Changes in light environment, morphology, growth and yield of soybean in maize-soybean intercropping systems. F Crop Res 200: 38-46. DOI: 10.1016/j.fcr.2016.10.003.
Malki MKS, Wijesinghe JAAC, Ratnayake RHMK, Thilakarathna GC. 2023a. Characterization of arrowroot (Maranta arundinacea) starch as a potential starch source for the food industry. Heliyon 9: e20033. DOI: 10.1016/j.heliyon.2023.e20033.
Malki S, Sivalingam S, Wijesinghe A, Ratnayake K, Gimhani R. 2023b. Arrowroot (Maranta arundinacea): Variation in morphological and yield traits across Sri Lanka's agro-climatic zones and genetic diversity assessment. Adv Biosci Bioeng 11 (3): 76-84. DOI: 10.11648/j.abb.20231103.17.
Martre P, Quilot-Turion B, Luquet D, Memmah MMOS, Chenu K, Debaeke P. 2015. Model-assisted phenotyping and ideotype design. In: Sadras VO, Calderini DF (eds). Crop Physiology: Applications for Genetic Improvement and Agronomy. Elsevier Inc, Cambridge. DOI: 10.1016/B978-0-12-417104-6.00014-5.
Rana D, Kapoor KS, Samant SS, Bhatt A. 2020. Plant species conservation priority index for preparing management strategies: A case study from the Western Himalayas of India. Small-scale For 19 (4): 461-481. DOI: 10.1007/s11842-020-09447-4.
Raza A, Razzaq A, Mehmood SS, Zou X, Zhang X, Lv Y, Xu J. 2019. Impact of climate change on crops adaptation and strategies to tackle its outcome: A review. Plants 8: 34. DOI: 10.3390/plants8020034.
Roberts DP, Mattoo AK. 2018. Sustainable agriculture - enhancing environmental benefits, food nutritional quality and building crop resilience to abiotic and biotic stresses. Agriculture 8: 8. DOI: 10.3390/agriculture8010008.
Rondhi M, Pratiwi PA, Handini VT, Sunartomo AF, Budiman SA. 2018. Agricultural land conversion, land economic value, and sustainable agriculture: A case study in East Java, Indonesia. Land 7 (4): 148. DOI: 10.3390/land7040148.
Ross C, Fildes S, Millington AC. 2017. Land-use and land-cover change in the páramo of South-Central Ecuador, 1979-2014. Land 6 (3): 46. DOI: 10.3390/land6030046.
Sadras VO, Denison RF. 2016. Neither crop genetics nor crop management can be optimised. F Crop Res 189: 75-83. DOI: 10.1016/j.fcr.2016.01.015.
Shintu PV, Randhakrishnan VV, Mohanan KY. 2016. A study of the genetic variability of west indian arrowroot (Maranta arundinacea L.) in Kerala State of India. Agric For Fish 5 (5): 186-190. DOI: 10.11648/j.aff.20160505.17.
Tarique J, Sapuan SM, Khalina A, Sherwani SFK, Yusuf J, Ilyas RA. 2021. Recent developments in sustainable arrowroot (Maranta arundinacea Linn) starch biopolymers, fibres, biopolymer composites and their potential industrial applications: A review. J Mater Res Technol 13: 1191-1219. DOI: 10.1016/j.jmrt.2021.05.047.
Taylor M, Lebot V, McGregor A, Redden RJ. 2018. Sustainable Production of Roots And Tuber Crops For Food Security Under Climate Change. John Wiley and Sons, Hoboken. DOI: 10.1002/9781119180661.ch15.
Wang J, Bara?ski M, Hasanaliyeva G et al. 2021. Effect of irrigation, fertiliser type and variety on grain yield and nutritional quality of spelt wheat (Triticum spelta) grown under semi-arid conditions. Food Chem 358: 129826. DOI: 10.1016/j.foodchem.2021.129826.
Xu Y. 2016. Envirotyping for deciphering environmental impacts on crop plants. Theor Appl Genet 129 (4): 653-673. DOI: 10.1007/s00122-016-2691-5.
Zulfahmi, Pertiwi SA, Rosmaina, Elfianis R, Gulnar Z, Zhaxybay T, Bekzat M, Zhaparkulov G. 2023. Molecular identification of mother trees of four matoa cultivars (Pometia pinnata Forst & Forst) from Pekanbaru City, Indonesia using RAPD markers. Biodiversitas 24 (3): 1524-1529. DOI: 10.13057/biodiv/d240323.

Most read articles by the same author(s)

1 2 > >>