Exploring vegetation's role in enhancing ant-based coffee berry borer control in an agroforestry system




Abstract. Haryadi NT, Kurnianto AS, Dewi N, Sukma GAK, Devarigata ES, Suyitno YMR, Magvira NL, Firdaus AS. 2024. Exploring vegetation's role in enhancing ant-based coffee berry borer control in an agroforestry system. Biodiversitas 25: 491-501. The coffee industry faces a serious threat from coffee berry borer pests, causing significant economic losses. This research aims to explore the potential of using ants as a biological control method in coffee plantations, as well as the influence of shade on ant communities. The research was conducted in the Sumberjambe and Silo Sub-districts using purposive sampling methods to collect ant specimens with the beating sheet method. Specimens were identified in the laboratory, and data were analyzed using the Shannon-Wiener diversity index, the Evenness index, and the Margalef species richness index. The results showed 17 ant genera in Sumberjambe and 13 in Silo, with 7 of them acting as predators. The analysis indicated low diversity (H’=0.88-1.56) with the dominance of the Dolichoderus and Lasius genera at both locations. A high evenness index in Sumberjambe (E=0.75) indicated a uniform distribution, whereas a moderate value in Silo indicated a less uniform ant distribution (E=0.45). Species richness at both locations was considered low (Dmg=0.66-0.91). Comparative tests between the two locations did not show a significant difference in the diversity of ants that could potentially act as predators. This study also includes an analysis of tree species vegetation at the agroforestry sites, with Albizia chinensis trees showing the highest importance value in Silo (INP=209.37). This indicates the significant role of this plant in the ant agroforestry community. The Tapinoma genus (Pearson corr.=0.996, p-value=0.0467) and Solenopsis genus (Pearson corr.=0.993, p-value=0.0432) showed a very strong positive correlation with Albizia plants. However, some other combinations showed weaker correlations or approached zero, indicating that the number of vegetation species did not greatly influence their presence or abundance. This research provides insight into the diversity of ants, their potential role as predators of the coffee berry borer, and the relationship between ants and vegetation on two coffee-based agroforestry fields in Jember District, Indonesia.


Agathokleous E, Feng Z, Oksanen E, Sicard P, Wang Q, Saitanis CJ, Araminiene V, Blande JD, Hayes F, Calatayud V, Domingos M, Veresoglou SD, Peñuelas J, Wardle DA, De Marco A, Li Z, Harmens H, Yuan X, Vitale M, Paoletti E. 2020. Ozone affects plant, insect, and soil microbial communities: A threat to terrestrial ecosystems and biodiversity. Sci Adv 6 (33). DOI: 10.1126/sciadv.abc1176.
Alvareza M, Nugraha FAD, Leilani I, Satria R. 2020. Diversity of Ground-foraging Ants (Hymenoptera: Formicidae) in Bukit Kasang and Lubuk Bonta, Padang Pariaman District, West Sumatra. J Bio UA 8 (2): 54. DOI: 10.25077/jbioua.8.2.54-60.2020.
Amalia R, Gusti MH, Yudi FA, Rizmi. 2023. Ecology of Endemic Primate Proboscis Monkeys at Curiak Island Area, South Kalimantan, Indonesia. J MUDIMA 3 (3): 552–566. DOI: 10.55927/mudima.v3i3.2459.
Amaya-Espinel JD, Hostetler M, Henríquez C, Bonacic C. 2019. The influence of building density on Neotropical bird communities found in small urban parks. Landsc Urban Plan 190. DOI: 10.1016/j.landurbplan.2019.05.009.
Armbrecht I, Gallego MC. 2007. Testing ant predation on the coffee berry borer in shaded and sun coffee plantations in Colombia. Entomol Exp Appl 124 (3): 261–267. DOI: 10.1111/j.1570-7458.2007.00574.x.
Beilhe L, Roudine S, Quintero PJA, Allinne C, Daout D, Mauxion R, Carval D. 2020. Pest-regulating networks of the coffee berry borer (Hypothenemus hampei) in agroforestry systems. Crop Prot 131. DOI: 10.1016/j.cropro.2019.105036.
Blanchard S, Van Offelen J, Verheggen F, Detrain C. 2021. Towards more intimacy: moderate elevation of temperature drives increases in foraging and mutualistic interactions between Lasius niger and Aphis fabae. Ecol Entomol 46 (2): 406–418. DOI: 10.1111/een.12982.
Depa ?, Kaszyca-Taszakowska N, Taszakowski A, Kanturski M. 2020. Ant-induced evolutionary patterns in aphids. Biol Rev 95 (6): 1574–1589. DOI: 10.1111/brv.12629.
Detrain C, Prieur J. 2014. Sensitivity and feeding efficiency of the black garden ant Lasius niger to sugar resources. J Insect Physiol, 64 (1): 74–80. DOI: 10.1016/j.jinsphys.2014.03.010.
Díaz-García JM, Pineda E, López-Barrera F, Moreno CE. 2017. Amphibian species and functional diversity as indicators of restoration success in tropical montane forest. Biodivers Conserv 26 (11):2569–2589. DOI: 10.1007/s10531-017-1372-2.
Djatmiko HA, Kurniawan DW, Prihatiningsih N. 2022. Potential of Bacillus subtilis potato isolate as biocontrol agent of Xanthomonas oryzae pv. oryzae and candidate for nanosuspension formula. Biodiversitas 23 (7): 3313–3317. DOI: 10.13057/biodiv/d230702.
Endo S, Itino T. 2013. Myrmecophilous aphids produce cuticular hydrocarbons that resemble those of their tending ants. Popul Ecol 55 (1): 27–34. DOI: 10.1007/s10144-012-0355-0.
Frouz J. 2018. Effects of soil macro- and mesofauna on litter decomposition and soil organic matter stabilization. Geoderma 332: 161–172. DOI: 10.1016/j.geoderma.2017.08.039.
Hartoyo APP, Prasetyo LB, Siregar IZ, Supriyanto, Theilade I, Siregar UJ. 2019. Carbon stock assessment using forest canopy density mapper in agroforestry land in Berau, East Kalimantan, Indonesia. Biodiversitas 20 (9): 2661–2676. DOI: 10.13057/biodiv/d200931.
Herwina H, Mairawita, Yulvita L, Putri D, Satria R, Janra MN, Yaherwandi, Sakamaki Y. 2020. Ant Species Composition (Hymenoptera: Formicidae) at a Highland Agricultural Area for Wheat and Potato in Alahan Panjang, West Sumatera. IOP Conf Ser: Earth Environ Sci 515 (1). DOI: 10.1088/1755-1315/515/1/012018.
Infante F. 2018. Pest Management Strategies Against the Coffee Berry Borer (Coleoptera: Curculionidae: Scolytinae). J Agric Food Chem 66 (21): 5275–5280. DOI: 10.1021/acs.jafc.7b04875.
Jauharlina J, Husni H, Halimursyadah H, Rizali A, Febrian TA. 2021. Diversity of ants (Hymenoptera:Formicidae) in organic and conventional Arabica coffee plantations in Aceh Tengah Regency, Sumatra, Indonesia. IOP Conf Ser: Earth Environ Sci 667 (1). DOI: 10.1088/1755-1315/667/1/012036.
Kar S, Sirin D, Akyildiz G, Sakaci Z, Talay S, Camlitepe Y. 2022. Predation of ant species Lasius alienus on tick eggs: impacts of egg wax coating and tick species. Sci Rep 12 (1). DOI: 10.1038/s41598-022-19300-7.
Khan L. 2016. Importance value indices of various weeds and their management in turf grass. Pure Appl Biol 5 (4). DOI: 10.19045/bspab.2016.50101.
Kreider JJ, Chen TW, Hartke TR., Buchori D, Hidayat P, Nazarreta R, Scheu S, Drescher J. 2021. Rainforest conversion to monocultures favors generalist ants with large colonies. Ecosphere 12 (8). DOI: 10.1002/ecs2.
Kvålseth TO. 2015. Evenness indices once again: critical analysis of properties. SpringerPlus 4 (1). DOI: 10.1186/s40064-015-0944-4.
Mardaraj PC, Pirie TJ, Sethy J, Behera S. 2023. Community stance towards sloth bear (Melursus ursinus) conservation in Odisha, India. Biodiversitas 24 (5): 2521–2526. DOI: 10.13057/biodiv/d240503.
Morris JR, Perfecto I. 2016. Testing the potential for ant predation of immature coffee berry borer (Hypothenemus hampei) life stages. Agric Ecosyst Environ 233: 224–228. DOI: 10.1016/j.agee.2016.09.018.
Morris JR, Vandermeer J, Perfecto I. 2015. A keystone ant species provides robust biological control of the coffee berry borer under varying pest densities. PLoS ONE 10 (11). DOI: 10.1371/journal.pone.0142850.
Offenberg J. 2015. Ants as tools in sustainable agriculture. J Appl Ecol 52 (5): 1197–1205. DOI: 10.1111/1365-2664.12496.
Oliveira CM, Auad AM, Mendes SM, Frizzas MR. 2013. Economic impact of exotic insect pests in Brazilian agriculture. J Appl Entomol 137 (1–2): 1–15. DOI: 10.1111/jen.12018.
Saleh A, Hassan AA. 2020. Strategies for Controlling Cocoa Pod Borer, Conopomorpha cramerella Snellen, on Cocoa Farmers in Langkat District, North Sumatra, Indonesia. Adv Biol Sci Res 8. DOI: 10.2991/absr. k.200513.034.
Sanabria C, Lavelle P, Fonte SJ. 2014. Ants as indicators of soil-based ecosystem services in agroecosystems of the Colombian Llanos. Appl Soil Ecol 84: 24–30. DOI: 10.1016/j.apsoil.2014.07.001.
Santos R, Dodonov P, Delabie JHC. 2021. Effects of habitat conversion on ant functional groups: A global review. Sociobiology 68 (2): 6071-6071. DOI: 10.13102/sociobiology.v68i2.6071.
Strong WL. 2016. Biased richness and evenness relationships within Shannon-Wiener index values. Ecol Indic 67: 703–713. DOI: 10.1016/j.ecolind.2016.03.043.
Subedi IP, Budha PB, Kunwar RM, Charmakar S, Ulak S, Pradhan DK, Pokharel YP, Velayudhan ST, Sathyapala S, Animon I. 2021. Diversity and distribution of forest ants (Hymenoptera: Formicidae) in nepal: Implications for sustainable forest management. Insects 12 (12). DOI: 10.3390/insects12121128.
Thurman JH, Northfield TD, Snyder WE. 2019. Weaver Ants Provide Ecosystem Services to Tropical Tree Crops. Front Ecol Evol 7. DOI: 10.3389/fevo.2019.00120.
Trible W, Carroll R. 2014. Manipulating tropical fire ants to reduce the coffee berry borer. Ecol Entomol 39 (5): 603–609. DOI: 10.1111/een.12139.
Triyogo A, Budiadi, Widyastuti SM, Subrata SA, Budi SS. 2020. Abundance of ants (Hymenoptera: Formicidae) and the functional groups in two different habitats. Biodiversitas 21 (5): 2079–2087. DOI: 10.13057/biodiv/d210535.
Van Loon WMGM, Walvoort DJJ, van Hoey G, Vina-Herbon C, Blandon A, Pesch R, Schmitt P, Scholle J, Heyer K, Lavaleye M, Phillips G, Duineveld GCA, Blomqvist M. 2018. A regional benthic fauna assessment method for the Southern North Sea using Margalef diversity and reference value modelling. Ecol Indic 89: 667–679. DOI: 10.1016/j.ecolind.2017.09.029.
Vega FE, Infante F, Johnson AJ. 2015. The Genus Hypothenemus, with Emphasis on H. hampei, the Coffee Berry Borer. In Bark Beetles: Biol Ecol Nativ Invasive Species: 427–494. DOI: 10.1016/B978-0-12-417156-5.00011-3.
Zuo J, Zu M, Liu L, Song X, Yuan Y. 2021. Composition and diversity of bacterial communities in the rhizosphere of the Chinese medicinal herb Dendrobium. BMC Plant Biol 21 (1):127. DOI: 10.1186/s12870-021-02893-y.

Most read articles by the same author(s)