Effectiveness of Bacillus spp. from West Sumatra, Indonesia in controlling Spodoptera frugiperda (Lepidoptera: Noctuidae)

##plugins.themes.bootstrap3.article.main##

NOVRI NELLY
HASMIANDY HAMID
EKA CANDRA LINA
YUNISMAN
RUSDI RUSLI
YULMIRA YANTI
MONA KAIRUNISA

Abstract

Abstract. Nelly N, Hamid H, Lina EC, Yunisman, Rusli R, Yanti Y, Kairunisa M. 2024. Effectiveness of Bacillus spp. from West Sumatra, Indonesia in controlling Spodoptera frugiperda (Lepidoptera: Noctuidae). Biodiversitas 25: 1472-1478. Spodoptera frugiperda J.E. Smith (Lepidoptera: Noctuidae) is an invasive pest widely recognized for attacking corn plants. This pest was first discovered in early 2019 in West Sumatra, Indonesia, posing a significant threat to agricultural productivity. To control S. frugiperda, local biological agents, namely Bacillus spp., originating from West Sumatra, have been explored as a potential control method. Therefore, this study aimed to obtain Bacillus spp isolates from rhizosphere origin and assess their effectiveness in controlling S. frugiperda in the laboratory. A completely randomized design was used, consisting of five treatments with three replications. The treatments included Bacillus cereus strain MRPLUMBE1.3, Bacillus myocytes strain MRRZLL 2.2, and Bacillus sp. MRTE strain 1.3.3. For comparison, there was a synthetic insecticide (active ingredient chlorantraniliprole) and a control (distilled water). The application of isolate suspension was carried out through larvae feed. The parameters observed included larvae mortality, percentage of formed pupae and adults (imago), number of eggs laid by females, and survival time of adults. The data obtained were analyzed using Analysis of Variance (ANOVA) and tested with LSD at the 5% level. The results showed that Bacillus spp. isolates originating from the rhizosphere effectively controlled S. frugiperda larvae. The best isolate that can be used to control S. frugiperda is Bacillus spp. from Solok. Specifically, Bacillus sp. strain MRTPE 1.3.3 showed larvae mortality ranged between 28.33 and 41.67%, and the suspension affected the percentage of formed pupae (51.66%) and the survival time of adults (4.5-5.8 days).

##plugins.themes.bootstrap3.article.details##

References
Ahissou BR, Sawadogo WM, Dabiré GT, Kambiré FC, Bokonon-Ganta AH, Somda I, and Verheggen FJ. 2022. Susceptibility of fall armyworm Spodoptera frugiperda (JE Smith) to microbial and botanical bioinsecticides and control failure likelihood estimation. www.irac-online.org/
Ali, E. A., & Ibrahim, G. A. 2023. Biological Control for some Insects by Using Plant Growth Promoting Bacteria in Laboratory and Field Conditions. Journal of Plant Protection and Pathology, 153-164.
Arsi A, Pujiastuti Y, Herlinda S, Shk S, and Gunawan B. 2019. Smart Farming yang Berwawasan Lingkungan untuk. In Prosiding Seminar Nasional Lahan Suboptimal.
Ayudya DR, Herlinda S, and Suwandi S. 2019. Insecticidal activity of culture filtrates from the liquid medium of Beauveria bassiana isolates from South Sumatra (Indonesia) wetland soil against larvae of Spodoptera litura. Biodiversitas, 20(8), 2101–2109. https://doi.org/10.13057/biodiv/d200802
Bateman ML, Day RK, Luke B, Edgington S, Kuhlmann U, and Cock MJW. 2018. Assessment of potential biopesticide options for managing fall armyworm (Spodoptera frugiperda ) in Africa. Journal of Applied Entomology. 142(9): 805–819. https://doi.org/10.1111/jen.12565
Burtet LM, Bernardi O, Melo AA, Pes MP, Strahl TT, and Guedes JVC. 2017. Managing fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae), with Bt maize and insecticides in southern Brazil. Pest Management Science, 73(12): 2569–2577. https://doi.org/10.1002/ps.4660
de Bortoli CP, and Jurat-Fuentes JL. 2019. Mechanisms of resistance to commercially relevant entomopathogenic bacteria. In Current Opinion in Insect Science (Vol. 33, pp. 56–62). Elsevier Inc. https://doi.org/10.1016/j.cois.2019.03.007
Fontana Capalbo DM, Valicente FH, Moraes IDO, and Pelizer LH. 2001. Solid-state fermentation of Bacillus thuringiensis tolworthi to control fall armyworm in maize. Electronic Journal of Biotechnology. 4(2): 112–115. https://doi.org/10.2225/vol4-issue2-fulltext-5
Ginting, Zarkani A, and Sipriyadi S. 2020. A new invasive pest, Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae) attacking corn in Bengkulu, Indonesia. https://www.researchgate.net/publication/341617430
Gustianingtyas M, Herlinda S, and Suwandi S. 2021. The endophytic fungi from South Sumatra (Indonesia) and their pathogenecity against the new invasive fall armyworm, Spodoptera frugiperda . Biodiversitas. 22(2): 1051–1062. https://doi.org/10.13057/BIODIV/D220262
Gutirrez-Moreno R, Mota-Sanchez D, Blanco CA, Whalon ME, Terán-Santofimio H, Rodriguez-Maciel JC, and Difonzo C. 2019. Field-evolved resistance of the fall armyworm (Lepidoptera: Noctuidae) to synthetic insecticides in Puerto Rico and Mexico. Journal of Economic Entomology. 112(2), 792–802. https://doi.org/10.1093/jee/toy372
Hamid, H., Yanti, Y., & Joni, F. R. 2020. Tomato (Lycopersicum esculentum Mill.) resilience enhancement with indigenous endophytic bacteria against Bemisia tabaci (Hemiptera: Aleyrodidae). JAPS: Journal of Animal & Plant Sciences, 30(1).
Handayani K, Janah SM, Ekowati CN, and Kanedi M. 2023. Larvicide effects of Bacillus sp isolated from soil against fall armyworm Spodoptera frugiperda (Lepidoptera: Noctuidae). GSC Biological and Pharmaceutical Sciences. 22(3): 028–034. https://doi.org/10.30574/gscbps.2023.22.3.008
Houngbo S, Zannou A, Aoudji A, Sossou HC, Sinzogan A, Sikirou R, Zossou E, Totin Vodounon HS, Adomou A, and Ahanchédé A. 2020. Farmers’ knowledge and management practices of fall armyworm, Spodoptera frugiperda (J.E. Smith) in Benin, West Africa. Agriculture (Switzerland). 10(10): 1–15. https://doi.org/10.3390/agriculture10100430
Hutasoit RT, Kalqutny SH, and Widiarta IN. 2020. Spatial Distribution Pattern, Bionomic, and Demographic Parameters of a New Invasive Species of Armyworm Spodoptera frugiperda (Lepidoptera; Noctuidae) in Maize of South Sumatra, Indonesia. Biodiversitas 21(8): 3576-3582
Idrees A, Afzal A, Qadir ZA, and Li J. 2022. Bioassays of Beauveria bassiana Isolates against the Fall Armyworm, Spodoptera frugiperda . Journal of Fungi. 8(7). https://doi.org/10.3390/jof8070717
Kalqutny SH, Nonci N, and Muis A. 2021. The incidence of fall armyworm Spodoptera frugiperda J.E. Smith (FAW) (Lepidoptera: Pyralidae), a newly invasive corn pest in Indonesia. IOP Conference Series: Earth and Environmental Science. 911(1). https://doi.org/10.1088/1755-1315/911/1/012056
Kansiime MK, Mugambi I, Rwomushana I, Nunda W, Lamontagne-Godwin J, Rware H, Phiri NA, Chipabika G, Ndlovu M, and Day R. 2019. Farmer perception of fall armyworm (Spodoptera frugiderda J.E. Smith) and farm-level management practices in Zambia. Pest Management Science. 75(10): 2840–2850. https://doi.org/10.1002/ps.5504
Maharani, Y. VK Dewi, LT Puspasari, L Rizkie. Y Hidayat, D Dono, 2019. Cases of Fall Army Worm Spodoptera frugiperda J. E. Smith (Lepidoptera: Noctuidae) Attack on Maize in Bandung, Garut and Sumedang District, West Java. CROPSAVER-Journal of Plant Protection. 2(1), 38-46.
Monnerat R, Martins E, Queiroz P, Ordúz S, Jaramillo G, Benintende G, Cozzi J, Real MD, Martinez-Ramirez A, Rausell C, Cerón J, Ibarra JE, Del Rincon-Castro MC, Espinoza AM, Meza-Basso L, Cabrera L, Sánchez J, Soberon M, and Bravo A. 2006. Genetic variability of Spodoptera frugiperda Smith (Lepidoptera: Noctuidae) populations from Latin America is associated with variations in susceptibility to Bacillus thuringiensis cry toxins. Applied and Environmental Microbiology, 72(11), 7029–7035. https://doi.org/10.1128/AEM.01454-06
Montezano D, Sosa-Gómez DR, and Ferreira Roque-Specht V. 2018. Host Plants of Spodoptera frugiperda (Lepidoptera: Noctuidae) in the Americas Use of Entomogenous fungi for leaf-cutting ants control View project. http://digitalcommons.unl.edu/entomologyfacpub/718
Nagoshi RN, Fleischer S, Meagher RL, Hay-Roe M, Khan A, Murúa MG, Silvie P, Vergara C, and Westbrook J. 2017. Fall armyworm migration across the lesser antilles and the potential for genetic exchanges between north and south American populations. PLoS ONE. 12(2). https://doi.org/10.1371/journal.pone.0171743
Nelly, N., Hamid, H., & Lina, E. C. 2021. The use of several maize varieties by farmers and the infestation of Spodoptera frugiperda (Noctuidae: Lepidoptera). IOP Conference Series: Earth and Environmental Science. 662(1). https://doi.org/10.1088/1755-1315/662/1/012020
Niassy S, Agbodzavu MK, Kimathi E, Mutune B, Abdel-Rahman EF M, Salifu D, Hailu G, Belayneh YT, Felege E, Tonnang HEZ, Ekesi S and Subramanian S. 2021. Bioecology of fall armyworm Spodoptera frugiperda (J. E. Smith), its management and potential patterns of seasonal spread in Africa. PLoS ONE, 16(6 June 2021). https://doi.org/10.1371/journal.pone.0249042
Ramanujam B, Poornesha B, and Shylesha AN. 2020. Effect of entomopathogenic fungi against invasive pest Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae) in maize. Egyptian Journal of Biological Pest Control. 30(1). https://doi.org/10.1186/s41938-020-00291-4
Sartiami D, Dadang, Harahap, IS, Kusumah YM, and Anwar R. 2020. First record of fall armyworm (Spodoptera frugiperda ) in Indonesia and its occurence in three provinces. IOP Conference Series: Earth and Environmental Science. 468(1). https://doi.org/10.1088/1755-1315/468/1/012021
Tambo JA, Day RK, Lamontagne-Godwin J, Silvestri S, Beseh PK, Oppong-Mensah B, Phiri NA, and Matimelo M. 2020. Tackling fall armyworm (Spodoptera frugiperda ) outbreak in Africa: an analysis of farmers’ control actions. International Journal of Pest Management, 66(4), 298–310. https://doi.org/10.1080/09670874.2019.1646942
Willing B, Enie T, Umi K, Tri MP, Hadi S, dan Didah M. 2020. Effectiveness of insecticides containing the active ingredient chlorantraniliprole against Spodoptera frugiperda larvae (JE Smith). Jurnal Proteksi Tanaman. 2(1) : 29-37.
Yanti, Y., Habazar, T., & Resti, Z. 2017. Solid formulation of indigenous rhizobacteria Bacillus thuringiensis Ts2 and storage time to control bacterial pustules Xanthomonas axonopodis pv. glycines. Jurnal Hama dan Penyakit Tumbuhan Tropika, 17(1), 9-18.

Most read articles by the same author(s)

1 2 > >>