The ability of indigenous Bacillus spp. consortia to control the anthracnose disease (Colletrotricum capsici) and increase the growth of chili plants

##plugins.themes.bootstrap3.article.main##

YULMIRA YANTI
HASMIANDY HAMID
REFLIN
WARNITA
TRIMURTI HABAZAR

Abstract

Abstract. Yanti Y, Hamid H, Reflin, Warnita, Habazar T. 2019. The ability of indigenous Bacillus spp. consortia to control the anthracnose disease (Colletrotricum capsici) and increase the growth of chili. Biodiversitas 21: 179-186. Anthracnose disease caused by Colletotrichum capsici can reduce yields of chili up to 80%. The control of anthracnose disease is generally carried out using synthetic fungicides. However, the use of these fungicides can pollute the environment and harm human health. One alternative control that needs to be developed is the use of Bacillus spp. as a biocontrol agent. The study was conducted to obtain an indigenous Bacillus spp. consortium that compatible as a biological agent for the control of the anthracnose diseases and promoting the growth of chili plants. The experiment was arranged as a completely randomized design, consisted of three stages, namely: 1) inhibitory test of indigenous Bacillus spp. against C. capsici in vitro, 2) compatibility test of indigenous Bacillus spp. and 3) Test of indigenous Bacillus spp.consortium for controlling C. capsici and promoting the growth of chili. The results showed that eight species of indigenous endophytic bacteria could inhibit the growth of C. capsici in vitro. All combinations of indigenous Bacillus spp. were compatible for controlling C. capsici. Four combinations of Bacillus spp. were able to increase the growth of chili plants. K1 consortium (Bacillus pseudomycoides strain SLBE 3.1 AP, Bacillus thuringiensis strain SLBE 2.3 BB, Bacillus toyonensis strain AGBE 2.1 TL) was the best consortium for controlling C. capsici.

##plugins.themes.bootstrap3.article.details##

References
Abdalla, S. A., Algam, S. A., Ibrahim, E. A., & Naim, A. M. E. (2014). In vitro screening of Bacillus isolates for biological control of early blight disease of tomato in shambat soil. World J. Agric. Res, 2(2), 47-50.
Amaresan, N., Jayakumar, V., & Thajuddin, N. (2014). Isolation and characterization of endophytic bacteria associated with chilli (Capsicum annuum) grown in coastal agricultural ecosystem.
Aydi Ben Abdallah, R., Nefzi, A., Jabnoun-Khiareddine, H., Messaoud, C., Stedel, C., Papadopoulou, K. K., ... & Daami-Remadi, M. (2016). A putative endophytic Bacillus cereus str. S42 from Nicotiana glauca for biocontrol of Fusarium wilt disease in tomato and gas chromatography-mass spectrometry analysis of its chloroform extract. Archives of Phytopathology and Plant Protection, 49(13-14), 343-361.
Babu, A. N., Jogaiah, S., Ito, S. I., Nagaraj, A. K., & Tran, L. S. P. (2015). Improvement of growth, fruit weight and early blight disease protection of tomato plants by rhizosphere bacteria is correlated with their beneficial traits and induced biosynthesis of antioxidant peroxidase and polyphenol oxidase. Plant Science, 231, 62-73.
Bashan LE, Bashan Y. 2005. Bacteria: Plant growth-promoting soil. In: Hillel D (editor). Encyclopedia of soil in environment vol 1. Elsevier, Oxford. Pp. 103-115.
Beutin L. 1991. The different hemolysins of Escherichia coli. Med Microbiol Immunol 180: 167-182.
Chen, Y., Yan, F., Chai, Y., Liu, H., Kolter, R., Losick, R., & Guo, J. H. (2013). Biocontrol of tomato wilt disease by B acillus subtilis isolates from natural environments depends on conserved genes mediating biofilm formation. Environmental microbiology, 15(3), 848-864.
Chowdhury, S. P., Hartmann, A., Gao, X., & Borriss, R. (2015). Biocontrol mechanism by root-associated Bacillus amyloliquefaciens FZB42–a review. Frontiers in microbiology, 6, 780.
Elshakh, A. S., Anjum, S. I., Qiu, W., Almoneafy, A. A., Li, W., Yang, Z., ... & Xie, G. L. (2016). Controlling and defence?related mechanisms of Bacillus strains against bacterial leaf blight of rice. Journal of Phytopathology, 164(7-8), 534-546.
Fousia, S., Paplomatas, E. J., & Tjamos, S. E. (2016). B acillus subtilis QST 713 Confers Protection to Tomato Plants Against P seudomonas syringae pv tomato and Induces Plant Defence?related Genes. Journal of Phytopathology, 164(4), 264-270.
Han, J., Chen, D., Huang, J., Li, X., Zhou, W. W., Gao, W., & Jia, Y. (2015). Antifungal activity and biocontrol potential of Paenibacillus polymyxa HT16 against white rot pathogen (Coniella diplodiella Speq.) in table grapes. Biocontrol science and technology, 25(10), 1120-1132.
Hinarejos, E., Castellano, M., Rodrigo, I., Bellés, J. M., Conejero, V., López-Gresa, M. P., & Lisón, P. (2016). Bacillus subtilis IAB/BS03 as a potential biological control agent. European Journal of Plant Pathology, 146(3), 597-608.
James D, Girija D, Mathew SK, Nazeem PA, Babu TD, Varma AS. 2003.Detection of Ralstonia solanacearum race 3 causing bacterial wilt of solanaceous vegetables in Kerala, using random amplified polymorphic DNA (RAPD) analysis. J of Trop Ag 41:33-37.
Jiang, J., Liu, H., Li, Q., Gao, N., Yao, Y., & Xu, H. (2015). Combined remediation of Cd–phenanthrene co-contaminated soil by Pleurotus cornucopiae and Bacillus thuringiensis FQ1 and the antioxidant responses in Pleurotus cornucopiae. Ecotoxicology and environmental safety, 120, 386-393.
Khedher, S. B., Kilani-Feki, O., Dammak, M., Jabnoun-Khiareddine, H., Daami-Remadi, M., & Tounsi, S. (2015). Efficacy of Bacillus subtilis V26 as a biological control agent against Rhizoctonia solani on potato. Comptes rendus biologies, 338(12), 784-792.
Kumar, K. H., & Jagadeesh, K. S. (2016). Microbial consortia-mediated plant defense against phytopathogens and growth benefits. South Indian Journal of Biological Sciences, 2(4), 395-403.
Montri, P., Taylor, P. W. J., & Mongkolporn, O. (2009). Pathotypes of Colletotrichum capsici, the causal agent of chili anthracnose, in Thailand. Plant Disease, 93(1), 17-20.
Ouhaibi-Ben Abdeljalil, N., Renault, D., Gerbore, J., Vallance, J., & Rey, P. (2016). Evaluation of the Effectiveness of Tomato-Associated Rhizobacteria Applied Singly or as Three-Strain Consortium for Biosuppression of Sclerotinia Stem Rot in Tomato. J Microb Biochem Technol, 8, 312-320.
Ozaktan, H., Gül, A., Çak?r, B., Yolageldi, L., Akköprü, A., Fakhraei, D., & Akbaba, M. (2013). Isolation optimization of bacterial endophytes from cucumber plants and evaluation of their effects on growth promotion and biocontrol. Endophytes for plant protection: the state of the art. Deutsche Phytomedizinische Gesellschaft, Braunschweig, 262-268.
Paulitz, T.C. and Belanger, R.R. (2001). Biological control in greenhouse systems. Annu. Rev. Phytopathol., 39, 103-33.
Putro, N. S., Aini, L. Q., & Abadi, A. L. (2014). Pengujian konsorsium mikroba antagonis untuk mengendalikan penyakit antraknosa pada cabai merah besar (Capsicum annuum L.). Jurnal Hama dan Penyakit Tumbuhan, 2(4), pp-44.
Shanmugam, V., Thakur, H., Kaur, J., Gupta, S., Rajkumar, S., & Dohroo, N. P. 2013. Genetic diversity of Fusarium spp. inciting rhizome rot of ginger and its management by PGPR consortium in the western Himalayas. Biological control, 66(1), 1-7.
Sivan A, Chet I. 1989. Degradation of fungal cell walls by lytic enzymes of Trichoderma harzianum. Microbiology 135 (3): 675-682.
Sudharani, M., Shivaprakash, M. K., & Prabhavathi, M. K. 2014. Role of consortia of biocontrol agents and PGPR in the production of cauliflower under field condition. Trends Biosci, 7(22), 3542-3546.
Than, P. P., Prihastuti, H., Phoulivong, S., Taylor, P. W., & Hyde, K. D. (2008). Chilli anthracnose disease caused by Colletotrichum species. Journal of Zhejiang University Science B, 9(10), 764.
Than, PP, Prihastuti, H, Phoulivong, S, Taylor, PWJ, Hyde, KD 2008, ‘Review: Chilli anthracnose disease caused by Colletotrichum species’, J Zhejiang Univ Sci B. 9(10): 764-78
Wang Y, Zeng Q, Zhang Z. 2010. Antagonistic bioactivity of an endophytic bacterium H-6. African J Biotechnol 9 (37): 6140-6145.
Yamamoto, S., Shiraishi, S., Kawagoe, Y., Mochizuki, M., & Suzuki, S. (2015). Impact of Bacillus amyloliquefaciens S13?3 on control of bacterial wilt and powdery mildew in tomato. Pest management science, 71(5), 722-727.
Yanti, Y., Habazar, T., Reflinaldon, R., Nasution, C. R., & Felia, S. (2017). Indigenous Bacillus spp. ability to growth promoting activities and control bacterial wilt disease (Ralstonia solanacearum). Biodiversitas Journal of Biological Diversity, 18(4), 1562-1567.
Yanti, Y., Warnita, Reflin, Busniah, M. 2018. Indigenous endophyte bacteria ability to control Ralstonia and Fusarium wilt disease on chili pepper. Biodiversitas 19 (4): 1532-1538.
Zhang, D, Spadaro, D, Garibaldi, A, Gullino, ML 2011. Potential biocontrol activity of a strain of Pichia guilliermondii against grey mold of apples and its possible modes of action. Biol Cont. 57: 193-201.

Most read articles by the same author(s)