Phytochemical, antioxidant, and in-silico studies of Erigeron sumatrensis from Gayo Highlands as a potential inhibitor of Type-2 diabetes mellitus

##plugins.themes.bootstrap3.article.main##

VIVERA RUSELLI PUSPA
ZUMAIDAR
NURDIN
FITMAWATI

Abstract

Abstract. Puspa VR, Zumaidar, Nurdin, Fitmawati. 2024. Phytochemical, antioxidant, and in-silico studies of Erigeron sumatrensis from Gayo Highlands as a potential inhibitor of type-2 diabetes mellitus. Biodiversitas 25: 3179-3192. Erigeron sumatrensis Retz., a wild medicinal herb, was determined qualitatively and quantitatively for its leaf extract's phytochemical constituents and antioxidant capacity and to conduct computational studies. Secondary metabolites identified included flavonoids, phenolics, terpenoids, steroids, and alkaloids. The methanol fraction exhibited the greatest TPC (5945.45 mg GAE/g). Antioxidant activity, as determined by the ABTS assay, indicated a significant radical scavenging activity in the methanol fraction of E. sumatrensis leaves, with an IC50 value of 57.67 ?g/mL. In silico molecular docking revealed that cucurbitacin b, 25-desacetoxy-?-sitosterol, and ?-amyrin exhibited potential as ?-glucosidase inhibitors (PDB ID: 2QMJ). The same compounds demonstrated inhibitory properties against ?-amylase (PDB ID: 2QV4), with acarbose as a positive control with a binding energy of -7.8 kcal/mol. The ADMET profiles indicated compliance with Lipinski's rule of five for all compounds, suggesting their suitability as an orally administered drug. Based on these findings, E. sumatrensis has excellent potential as a source of raw materials for antidiabetic drug formulation, so it needs to be further investigated for pharmaceutical applications.

##plugins.themes.bootstrap3.article.details##

References
Abchir O, Daoui O, Nour H, Yamari I, Elkhattabi S, Errougui A, Chtita S. 2023. Exploration of Cannabis constituents as potential candidates against diabetes mellitus disease using molecular docking, dynamics simulations and ADMET investigations. Sci Afr. 21: 1–15. DOI.org/10.1016/j.sciaf.2023.e01745.
Abu-Izneid T, Rauf A, Saleem M, Mansour N, Abdelhady MIS, Ibrahim MM, Patel S. 2020. Urease inhibitory potential of extracts and active phytochemicals of Hypochaeris radicata (Asteraceae). Nat Prod Res. 34: 553–557. DOI.org/10.1080/14786419.2018.1489387.
Ahmad I, Ahmed S, Shahzad M, Shaukat U, Basit A, Fatima M. 2022. GC–MS profiling, phytochemical and biological investigation of aerial parts of Leucophyllum frutescens (Berl.) I.M. Johnst (Cenizo). South African Journal of Botany. 148: 200–209. DOI.org/10.1016/j.sajb.2022.04.038.
Ahmad Sohail, Ahmad Shabir, Bibi A, Ishaq MS, Afridi MS, Kanwal F, Zakir M, Fatima F. 2014. Phytochemical analysis, antioxidant activity, fatty acids composition, and functional group analysis of Heliotropium bacciferum. The Scientific World Journal. 2014: 1–8. DOI.org/10.1155/2014/829076.
Ahmed M, Khan K ur R, Ahmad S, Aati HY, Sherif AE, Ashkan MF, Alrahimi J, Abdullah Motwali E, Imran Tousif M, Abbas Khan M, et al. 2022. Phytochemical, antioxidant, enzyme inhibitory, thrombolytic, antibacterial, antiviral and in silico studies of Acacia jacquemontii leaves. Arabian Journal of Chemistry. 15: 1–17. DOI.org/10.1016/j.arabjc.2022.104345.
Aiyelaagbe OO, Oguntoye SO, Hamid AA, Ogundare AM, Ojo DB, Ajao A, Owolabi NO. 2016. GC-MS Analysis, Antimicrobial and Antioxidant Activities of Extracts of the Aerial Parts of Conyza sumatrensis. Journal of Applied Sciences and Environmental Management. 20: 103. DOI.org/10.4314/jasem.v20i1.13.
Akshatha JV, Kumar HSS, Prakash HS, Nalini MS. 2021. In silico docking studies of ?-amylase inhibitors from the anti-diabetic plant Leucas ciliata Benth. and an endophyte, Streptomyces longisporoflavus. 3 Biotech. 11: 1–16. DOI.org/10.1007/s13205-020-02547-0.
Al-Harrasi A, Csuk R, Khan A, Hussain J. 2019. Distribution of the anti-inflammatory and anti-depressant compounds: Incensole and incensole acetate in genus Boswellia. Phytochemistry. 161: 28–40. DOI.org/10.1016/j.phytochem.2019.01.007.
Ali SI, Gopalakrishnan B, Venkatesalu V. 2017. Pharmacognosy, Phytochemistry and Pharmacological Properties of Achillea millefolium L.: A Review. Phytotherapy Research. 31: 1140–1161. DOI.org/10.1002/ptr.5840.
Al-Momani LA, Abu-Orabi ST, Hlail HM, Alkhatib RQ, Al-Dalahmeh Y, Al-Qudah MA. 2023. Anthemis cotula L. from Jordan: Essential oil composition, LC-ESI-MS/MS profiling of phenolic acids - flavonoids and in vitro antioxidant activity. Arabian Journal of Chemistry. 16: 1–9. DOI.org/10.1016/j.arabjc.2022.104470.
Al-Qahtani J, Abbasi A, Aati HY, Al-Taweel A, Al-Abdali A, Aati S, Yanbawi AN, Abbas Khan M, Ahmad Ghalloo B, Anwar M, Khan K ur R. 2023. Phytochemical, Antimicrobial, Antidiabetic, Thrombolytic, anticancer Activities, and in silico studies of Ficus palmata Forssk. Arabian Journal of Chemistry. 16: 1-18. DOI.org/10.1016/j.arabjc.2022.104455.
Ascari J, de Oliveira MS, Nunes DS, Granato D, Scharf DR, Simionatto E, Otuki M, Soley B, Heiden G. 2019. Chemical composition, antioxidant and anti-inflammatory activities of the essential oils from male and female specimens of Baccharis punctulata (Asteraceae). J Ethnopharmacol. 234: 1–7. DOI.org/10.1016/j.jep.2019.01.005.
Ashraf J, Mughal EU, Alsantali RI, Obaid RJ, Sadiq A, Naeem N, Ali A, Massadaq A, Javed Q, Javid A, et al. 2021. Structure-based designing and synthesis of 2-phenylchromone derivatives as potent tyrosinase inhibitors: In vitro and in silico studies. Bioorg Med Chem. 35: 1–14. DOI.org/10.1016/j.bmc.2021.116057.
Asif M, Iqbal Z, Alam J, Majid A, Ijaz F, Ali N, Rahman IU, Hussain S, Khan A, Qadir G. 2020. Floristic inventory and biological spectra of Balakot, District Mansehra, Pakistan. Acta Ecologica Sinica. 40: 197–203. DOI.org/10.1016/J.CHNAES.2019.05.009.
Baba H, Kashimawo AJ, Ibe AC. 2021. Phytochemical evaluation and GC-MS profiling of the dichloromethane and ethanol extracts of Ocimum gratissimum L. and Lasianthera africana. BEAUV. Journal of Phytomedicine and Therapeutics. 20: 640–655. DOI.org/10.4314/jopat.v20i2.2.
Bakar F, Bahadir Acikara Ö, Ergene B, Nebio?lu S, Saltan Çito?lu G. 2015. Antioxidant activity and phytochemical screening of some asteraceae plants. Turk J Pharm Sci. 12: 123–132. DOI.org/10.5505/tjps.2015.18209.
Banjarnahor SDS, Artanti N. 2014. Antioxidant properties of flavonoids. Medical Journal of Indonesia. 23: 239–244. DOI.org/10.13181/mji.v23i4.1015.
Bartolome AP, Villaseñor IM, Yang WC. 2013. Bidens pilosa L. (Asteraceae): Botanical properties, traditional uses, phytochemistry, and pharmacology. Evidence-based Complementary and Alternative Medicine. 2013: 1–51. DOI.org/10.1155/2013/340215.
Boucheffa S, Sobhi W, Attoui A, Selli S, Kelebek H, Semmeq A, Benguerba Y. 2022. Effect of the main constituents of Pistacia lentiscus leaves against the DPPH radical and xanthine oxidase: experimental and theoretical study. J Biomol Struct Dyn. 40: 9870–9884. DOI.org/10.1080/07391102.2021.1936182.
Chandel V, Tripathi G, Nayar SA, Rathi B, Kumar A, Kumar D. 2022. In silico identification and validation of triarylchromones as potential inhibitor against main protease of severe acute respiratory syndrome coronavirus 2. J Biomol Struct Dyn. 40: 8850–8865. DOI.org/10.1080/07391102.2021.1918255.
Chipiti T, Ibrahim MA, Singh M, Islam MS. 2017. In vitro ?-amylase and ?-glucosidase inhibitory and cytotoxic activities of extracts from Cissus cornifolia planch parts. Pharmacogn Mag. 13: 329–333. DOI.org/10.4103/pm.pm_223_16.
Damián-Medina K, Salinas-Moreno Y, Milenkovic D, Figueroa-Yáñez L, Marino-Marmolejo E, Higuera-Ciapara I, Vallejo-Cardona A, Lugo-Cervantes E. 2020. In silico analysis of antidiabetic potential of phenolic compounds from blue corn (Zea mays L.) and black bean (Phaseolus vulgaris L.). Heliyon. 6: 1–13. DOI.org/10.1016/j.heliyon.2020.e03632.
Ernilasari, Walil K, Fitmawati, Roslim DI, Zumaidar, Saudah, Rayhannisa. 2021. Antibacterial activity of leaves, flowers, and fruits extract of Etlingera elatior from nagan raya district, indonesia against escherichia coli and staphylococcus aureus. Biodiversitas. 22: 4457–4464. DOI.org/10.13057/biodiv/d221039.
Erukainure OL, Otukile KP, Harejane KR, Salau VF, Aljoundi A, Chukwuma CI, Matsabisa MG. 2023. Computational insights into the antioxidant and antidiabetic mechanisms of cannabidiol: An in vitro and in silico study. Arabian Journal of Chemistry. 16: 1–12. DOI.org/10.1016/j.arabjc.2023.104842.
Farahmandfar R, Ramezanizadeh MH. 2018. Oxidative stability of canola oil by Biarum bovei bioactive components during storage at ambient temperature. Food Sci Nutr. 6: 342–347. DOI.org/10.1002/fsn3.560.
Ferreira LLG, Andricopulo AD. 2019. ADMET modeling approaches in drug discovery. Drug Discov Today. 24: 1157–1165. DOI.org/10.1016/j.drudis.2019.03.015.
Fu L, Zheng Y, Wang A, Zhang P, Ding S, Wu W, Zhou Q, Chen F, Zhao S. 2021. Identification of medicinal herbs in Asteraceae and Polygonaceae using an electrochemical fingerprint recorded using screen-printed electrode. J Herb Med. 30: 1–8. DOI.org/10.1016/j.hermed.2021.100512.
Furi M, Al Basit N, Ikhtiarudin I, Utami R. 2020. Penentuan Total Fenolik, Flavonoid dan Uji Aktivitas Antioksidan Ekstrak dan Fraksi Daun Kedabu (Sonneratia ovata Backer). Jurnal Farmasi Indonesia. 12: 48–59. DOI.org/10.35617/jfionline.v12i1.56.
Gholam GM, Artika IM. 2023. Potensi yerbentuk interaksi molekuler pada fitokimia alami sebagai inhibitor Sap 2 dari Candida albicans: pendekatan In silico. Jurnal Farmasi Udayana. 11: 54–62. DOI.org/10.24843/jfu.2022.v11.i02.p04.
González–Zamora A, Ríos–Sánchez E, Pérez–Morales R. 2020. Conservation of vascular plant diversity in an agricultural and industrial region in the Chihuahuan Desert, Mexico. Glob Ecol Conserv. 22: 1–15. DOI.org/10.1016/j.gecco.2020.e01002.
Hashmi WJ, Ismail H, Mehmood F, Mirza B. 2018. Neuroprotective, antidiabetic and antioxidant effect of Hedera nepalensis and Lupeol against STZ + AlCl3 induced rats model. Daru. 26: 179–190. DOI: 10.1007/s40199-018-0223-3.
Huang S, Mo C, Zeng T, Lai Y, Zhou C, Xie S, Chen L, Wang Y, Chen Y. 2021. Lupeol ameliorates LPS/D-GalN induced acute hepatic damage by suppressing inflammation and oxidative stress through TGFbeta1-Nrf2 signal pathway. Aging. 13: 6592–6605. DOI:10.18632/aging.202409.
Islam MT, Ali ES, Uddin SJ, Shaw S, Islam MA, Ahmed MI, Chandra Shill M, Karmakar UK, Yarla NS, Khan IN, et al. 2018. Phytol: A review of biomedical activities. Food and Chemical Toxicology. 121: 82–94. DOI.org/10.1016/j.fct.2018.08.032
Jack IR, Okorosaye-Orubite K. 2008. Phytochemical analysis and antimicrobial activity of the extract of leaves of fleabane (Conyza sumatrensis). J Appl Sci Environ Manage. 12: 63–65. DOI:10.4314/jasem.v12i4.55221.
Javeed A, Ahmed M, Sajid AR, Sikandar A, Aslam M, Ul Hassan T, Samiullah, Nazir Z, Ji M, Li C. 2022. Comparative Assessment of Phytoconstituents, Antioxidant Activity and Chemical Analysis of Different Parts of Milk Thistle Silybum marianum L. Molecules. 27 :1–12. DOI.org/10.3390/molecules27092641.
Khan I, Rehman W, Rahim F, Hussain R, Khan S, Rasheed L, Alanazi AS, Hefnawy M, Alanazi MM, Shah SAA, Taha M. 2023. Synthesis, in vitro biological analysis and molecular docking studies of new thiadiazole-based thiourea derivatives as dual inhibitors of a-amylase and a-glucosidase. Arabian Journal of Chemistry. 16: 1–10. DOI.org/10.1016/j.arabjc.2023.105078.
Kim H, Lee DG. 2021. Lupeol-induced nitric oxide elicits apoptosis-like death within Escherichia coli in a DNA fragmentation-independent manner. Biochem Journal. 478: 855–869. DOI:10.1042/BCJ20200925.
Lee TW, Bai KJ, Lee TI, Chao TF, Kao YH, Chen YJ. 2017. PPARs modulate cardiac metabolism and mitochondrial function in diabetes. J Biomed Sci. 24: 1–9. DOI.org/10.1186/s12929-016-0309-5.
Li D, Guo Y ying, Cen X feng, Qiu H liang, Chen S, Zeng X feng, Zeng Q, Xu M, Tang Q zhu. 2022. Lupeol protects against cardiac hypertrophy via TLR4-PI3K-Akt-NF-?B pathways. Acta Pharmacol Sin. 43: 1989–2002. DOI.org/10.1038/s41401-021-00820-3.
Lopes AP, Bagatela BS, Rosa PCP, Nanayakkara DNP, Carlos Tavares Carvalho J, Maistro EL, Bastos JK, Perazzo FF. 2013. Antioxidant and cytotoxic effects of crude extract, fractions and 4-nerolidylcathecol from aerial parts of Pothomorphe umbellata L. (Piperaceae). Biomed Res Int. 2013: 1–5. DOI.org/10.1155/2013/206581.
Majid M, Farhan A, Asad MI, Khan MR, Hassan SSU, Haq IU, Bungau S. 2022. An Extensive Pharmacological Evaluation of New Anti-Cancer Triterpenoid (Nummularic Acid) from Ipomoea batatas through In Vitro, In Silico, and In Vivo Studies. Molecules. 27: 1–19. DOI.org/10.3390/molecules27082474.
Masyudi, Hanafiah M, Rinidar, Usman S, Marlina. 2022. Phytochemical screening and GC-MS analysis of bioactive compounds of Blumea balsamifera leaf extracts from South Aceh, Indonesia. Biodiversitas. 23: 1346–1354. DOI.org/10.13057/biodiv/d230319.
Muflihah YM, Gollavelli G, Ling YC. 2021. Correlation study of antioxidant activity with phenolic and flavonoid compounds in 12 indonesian indigenous herbs. Antioxidants. 10: 1-15. DOI.org/10.3390/antiox10101530.
Mustikasari K, Santoso M, Fadzelly Abu Bakar M, Fatmawati S. 2024. Antioxidant, ?-glucosidase inhibitory, and cytotoxic activities of Mangifera rufocostata extract and identification of its compounds by LC-MS/MS analysis. Arabian Journal of Chemistry. 17: 1-8. DOI.org/10.1016/j.arabjc.2023.105391.
Nikoli? M, Stevovi? S. 2015. Family Asteraceae as a sustainable planning tool in phytoremediation and its relevance in urban areas. Urban For Urban Green. 14: 782–789. DOI.org/10.1016/j.ufug.2015.08.002.
Nuraskin C, Marlina, Idroes R, Soraya C, Djufri. 2020. Identification of secondary metabolite of laban leaf extract (Vitex pinnata l) from geothermal areas and non-geothermal of agam mountains in Aceh Besar, Aceh province, Indonesia. Rasayan Journal of Chemistry. 13: 18–23. DOI.org/10.31788/RJC.2020.1315434.
Nurmilasari, Ginting B, Helwati H. 2017. Isolation of Antioxidant Compounds of Methanol Extract of Nutmeg Leaves (Myristica fragrans Houtt). Jurnal Natural. 17: 49–57. DOI: 10.24815/jn.v17i1.6998.
Olasunkanmi AA, Fadahunsi OS, Adegbola PI. 2022. Gas Chromatography-Mass Spectroscopic, high performance liquid chromatographic and In-silico characterization of antimicrobial and antioxidant constituents of Rhus longipes (Engl). Arabian Journal of Chemistry. 15: 1-12. DOI.org/10.1016/j.arabjc.2021.103601.
Park JS, Rehman IU, Choe K, Ahmad R, Lee HJ, Kim MO. 2023. A Triterpenoid Lupeol as an Antioxidant and Anti-Neuroinflammatory Agent: Impacts on Oxidative Stress in Alzheimer’s Disease. Nutrients. 15: 1–19. DOI.org/10.3390/nu15133059
Phuyal N, Jha PK, Raturi PP, Rajbhandary S. 2020. Total Phenolic, Flavonoid Contents, and Antioxidant Activities of Fruit, Seed, and Bark Extracts of Zanthoxylum armatum DC. Scientific World Journal. 2020: 1–7. DOI.org/10.1155/2020/8780704.
Rao H, Ahmad S, Y.Aati H, Basit A, Ahmad I, Ahmad Ghalloo B, Nadeem Shehzad M, Nazar R, Zeeshan M, Nasim MJ, ur Rehman Khan K. 2023. Phytochemical screening, biological evaluation, and molecular docking studies of aerial parts of Trigonella hamosa (branched Fenugreek). Arabian Journal of Chemistry. 16: 1-16. DOI.org/10.1016/j.arabjc.2023.104795.
Rashid F, Javaid A, Mahmood-ur-Rahman, Ashfaq UA, Sufyan M, Alshammari A, Alharbi M, Nisar MA, Khurshid M. 2022. Integrating Pharmacological and Computational Approaches for the Phytochemical Analysis of Syzygium cumini and Its Anti-Diabetic Potential. Molecules. 27: 1–16. DOI.org/10.3390/molecules27175734.
Rolnik A, Olas B. 2021. The plants of the Asteraceae family as agents in the protection of human health. Int J Mol Sci. 22: 1–10. DOI.org/10.3390/ijms22063009.
Ruiz-Reyes E, Mendoza-Cevallos MA, Polanco-Moreira AP, Segovia-Cedeño DG, Alcivar-Cedeño UE, Dueñas-Rivadeneira A. 2022. Phytochemical study of the plant species Bidens pilosa L. (Asteraceae) and Croton floccosus (Euphorbiaceae). F1000Res. 11: 1–23. DOI.org/10.12688/f1000research.112653.1.
Rustaiyan A, Faridchehr A. 2021. Constituents and biological activities of selected genera of the Iranian Asteraceae family. J Herb Med. 25: 1-59. DOI.org/10.1016/j.hermed.2020.100405.
Santoso B. 2019. In silico Study of Selected Molecules of Sea Cucumber as Antimitotic Using PyRx-Vina Program. Indonesian Journal of Pharmaceutical Science and Technology . 1: 33–38. DOI:https://doi.org/10.24198/ijpst.v1i2.20210.
Shahzad MN, Ahmad S, Tousif MI, Ahmad I, Rao H, Ahmad B, Basit A. 2022. Profiling of phytochemicals from aerial parts of Terminalia neotaliala using LC-ESI-MS2 and determination of antioxidant and enzyme inhibition activities. PLoS One. 17: 1–22. DOI.org/10.1371/journal.pone.0266094.
Sim L, Quezada-Calvillo R, Sterchi EE, Nichols BL, Rose DR. 2008. Human Intestinal Maltase-Glucoamylase: Crystal Structure of the N-Terminal Catalytic Subunit and Basis of Inhibition and Substrate Specificity. J Mol Biol. 375: 782–792. DOI.org/10.1016/j.jmb.2007.10.069.
Sohaq AAM, Md. Tahmeed Hossain, Md. Arifur Rahaman, Papia Rahman, Mohammad Shahinul Hasan, Rakhal Chandra Das, Md. Kibria Khan, Mahmudul Hasan Sikder, Mahboob Alam, Md. Jamal Uddin, et al. 2022. Molecular pharmacology and therapeutic advances of the pentacyclic triterpene lupeol. Phytomedicine. 99. DOI.org/10.1016/j.phymed.2022.154012.
Sokovi? M, Skaltsa H, Ferreira ICFR. 2019. Editorial: Bioactive Phytochemicals in Asteraceae: Structure, Function, and Biological Activity. Front Plant Sci. 10: 1–2. DOI.org/10.3389/fpls.2019.01464.
Soleimani V, Delghandi PS, Moallem SA, Karimi G. 2019. Safety and toxicity of silymarin, the major constituent of milk thistle extract: An updated review. Phytotherapy Research. 33: 1627–1638. DOI.org/10.1002/ptr.6361.
Suoth EJ, Datu O, Jayanti M, Wehantouw F. 2022. Analisis Fitokimia dan Uji Antioksidan Ekstrak dan Fraksi Pelarut dari Sediaan Krim Daun Leilem (Clerodendrum minahassae). Chem Prog. 15: 56–62. DOI.org/10.35799/cp.15.2.2022.44485.
Thabit RAS, Cheng X-R, Sun J, Le G, Pharm Sci PJ, Tang X, Shi Y-H, Le G-W. 2015. Antioxidant and antibacterial activities of extracts from Conyza bonariensis growing in Yemen. Pak J Pharm Sci. 28: 129–134. https://www.researchgate.net/publication/270288452.
Timalsina D, Devkota HP. 2021. Eclipta prostrata (L.) l. (Asteraceae): Ethnomedicinal uses, chemical constituents, and biological activities. Biomolecules. 11: 1–18. DOI.org/10.3390/biom11111738.
Truong DH, Nguyen DH, Ta NTA, Bui AV, Do TH, Nguyen HC. 2019. Evaluation of the use of different solvents for phytochemical constituents, antioxidants, and in vitro anti-inflammatory activities of Severinia buxifolia. J Food Qual. 2019: 1–9. DOI.org/10.1155/2019/8178294.
Uysal S, Senkardes I, Mollica A, Zengin G, Bulut G, Dogan A, Glamo?lija J, Sokovi? M, Lobine D, Mahomoodally FM. 2018. Biologically active compounds from two members of the Asteraceae family: Tragopogon dubius Scop. and Tussilago farfara L. J Biomol Struct Dyn. 37: 3269–3281. DOI.org/10.1080/07391102.2018.1506361.
Valdés-Tresanco MS, Valdés-Tresanco ME, Valiente PA, Moreno E. 2020. AMDock: a versatile graphical tool for assisting molecular docking with Autodock Vina and Autodock4. Biol Direct. 15: 1–12. DOI.org/10.1186/s13062-020-00267-2.
Walliser B, Marinovic S, Kornpointner C, Schlosser C, Abouelnasr M, Hutabarat OS, Haselmair-Gosch C, Molitor C, Stich K, Halbwirth H. 2022. The (Bio)chemical Base of Flower Colour in Bidens ferulifolia. Plants. 11: 1–15. DOI.org/10.3390/plants11101289.
Zhao Y, Li M, Wang X, Deng J, Zhang Z, Wang B. 2020. Influence of habitat on the phylogenetic structure of Robinia pseudoacacia forests in the eastern Loess Plateau, China. Glob Ecol Conserv. 24: 1–15. DOI.org/10.1016/j.gecco.2020.e01199.

Most read articles by the same author(s)

1 2 > >>