Species distribution model and population dynamics of invasive alien plant Calliandra calothyrsus in Gunung Ciremai National Park, West Java, Indonesia

##plugins.themes.bootstrap3.article.main##

IING NASIHIN
IMAM WIDHIONO
EMING SUDIANA
NURDIN
NINA HERLINA
WITIYASTI IMANINGSIH

Abstract

Abstract. Nasihin I, Widhiono I, Sudiana E, Nurdin, Herlina N, Imaningsih W. 2024. Species distribution model and population dynamics of invasive alien plant Calliandra calothyrsus in Gunung Ciremai National Park, West Java, Indonesia. Biodiversitas 25: 4806-4815. Invasive alien plants are a serious threat to conservation areas since they will threaten biodiversity by over-dominating species composition and reducing diversity. However, conservation area managers have not taken invasive alien plant management seriously. Calliandra calothyrsus is one of the invasive alien plant species that has been reported to occur in conservation areas. The purpose of this study was to develop a habitat suitability model and investigate population dynamics of C. calothyrsus in Gunung Ciremai National Park (GCNP), West Java Province, Indonesia. Maximum Entropy (MaxEnt) was used to build the model using 13 environmental predictors, including climate, physical, and soil characteristic variables. Population structure data were collected from 98 sampling plots, each measuring 10x10 m. The population dynamics and distribution of C. calothyrsus populations were analyzed using RangeShifter software with 50 years of simulation. The results showed an AUC value of >0.80, indicating the distribution model of C. calothyrsus has a high level of agreement between the model prediction and actual observation. Simulation analysis shows that the population of C. calothyrsus in GCNP will continue to increase over the next 50 years and spread throughout the park from where the occurrences of C. calothyrsus were recorded. The findings of this study suggest that managing the growth of the C. calothyrsus population from seedling to sapling is necessary, while restoring bare ground and shrub can prevent the spread of C. calothyrsus.

##plugins.themes.bootstrap3.article.details##

References
Alsamadisi AG, Tran LT, Pape? M. 2020. Employing inferences across scales: Integrating spatial data with different resolutions to enhance Maxent models. Ecol Model 415: 108857. DOI: 10.1016/j.ecolmodel.2019.108857.
Balai Taman Nasional Gunung Ciremai (BTNGC). 2015. Pemetaan dan Pengendalian Tanaman Invasif Taman Nasional Gunung Ciremai Tahun 2015. Balai Taman Nasional Gunung Ciremai, West Java. [Indonesian]
Barraquanda F, Gimenez O. 2019. Integrating multiple data sources to fit matrix population models for interacting species. Ecol Model 411: 108713. DOI: 10.1016/j.ecolmodel.2019.06.001.
Bierzychudek P. 2014. Plant biodiversity and population dynamics. In: Monson RK (eds). Ecology and The Environment. Springer, New York. DOI: 10.1007/978-1-4614-7501-9_15.
Bocedi G, Palmer SCF, Malchow AK, Zurell D, Watts K, Travis JMJ. 2021. RangeShifter 2.0: An extended and enhanced platform for modelling spatial eco-evolutionary dynamics and species' responses to environmental changes. Ecography 44: 1453-1462. DOI: 10.1111/ecog.05687.
Braun M, Schindler S, Essl F. 2016. Distribution and management of invasive alien plant species in protected areas in Central Europe. J Nat Conserv 32: 48-57. DOI: 10.1016/dx.doi.org/10.1016/j.jnc.2016.07.002.
Brown JL, Yoder AD. 2015. Shifting ranges and conservation challenges for lemurs in the face of climate change. Ecol Evol 6 (5): 1131-1142. DOI: 10.1002%2Fece3.1418.
Bucklin DN, Basille M, Benscoter AM, Brandt LA, Mazzotti FJ, Romanach SS, Speroterra C, Watling JI. 2015. Comparing species distribution models constructed with different subsets of environmental predictors. Divers Distrib 21: 23-35. DOI: 10.1111/ddi.12247.
Caswell H. 2001. Matrix Population Models: Construction, Analysis, and Interpretation (2nd ed.). Oxford University Press, London.
Cauwer VD, Muys B, Revermann R, Trabucco A. 2014. Potential, realised, future distribution and environmental suitability for Pterocarpus angolensis DC in southern Africa. For Ecol Manag 315: 211-226. DOI: 10.1016/j.foreco.2013.12.032.
Crawshaw L, Buchanan T, Shirose L, Palahnuk A, Cai HY, Bennett AM, Jardine CM, Davy CM. 2022. Widespread occurrence of Batrachochytrium dendrobatidis in Ontario, Canada, and predicted habitat suitability for the emerging Batrachochytrium salamandrivorans. Ecol Evol 12: e8798. DOI: 10.1002/ece3.8798.
Cruz-Cárdenas G, López-Mata L, Villaseñor JL, Ortiz E. 2014. Potential species distribution modeling and the use of principal component analysis as predictor variables. Revista Mexicana de Biodiversidad 85 (1): 36723. DOI: 10.7550/rmb.36723.
Csiszár Á, Kézdy P, Korda M, Bartha D. 2020. Occurrence and management of invasive alien species in Hungarian protected areas compared to Europe. Folia Oecologica 47 (2): 178-191. DOI: 10.2478/foecol-2020-0021.
Dann LE, Guja L, Kark S, Dwyer J. 2024. Comparative study reveals management of a dominant invasive plant facilitates subtropical forest regeneration. Biol Invasions 26: 299-313. DOI: 10.1007/s10530-023-03174-5.
Dermawan BA, Herdiyeni Y, Prasetyo LB, Siswoyo, A. 2018. Predicting the spread of Acacia Nilotica using Maximum Entropy Modeling. Telkomnika 16 (2): 703-712. DOI: 10.12928/TELKOMNIKA.v16i2.6894.
Dewi ASI, Putra EI, Haneda NF. 2022. Kesehatan areal hutan pasca kebakaran di Taman Nasional Gunung Ciremai, Kuningan, Jawa Barat. Buletin Kebun Raya 25 (3): 131-141. DOI: 10.55981/bkr.2022.803. [Indonesian]
Donovan TM, Welden CW. 2002. Spreadsheet Exercises in Ecology and Evolution Sunderland. Sinauer Associates, Massachusetts.
Elith J, Leathwick JR. 2009. Species distribution models: Ecological explanation and prediction across space and time. Ann Rev Ecol Evol Syst 40: 677-697. DOI: 10.1146/annurev.ecolsys.110308.120159.
Falcón-Brindis A, León-Cortés JL, Montanez-Reyna M. 2021. How effective are conservation areas to preserve biodiversity in Mexico? Perspect Ecol Conserv 19: 399-410. DOI: 10.1016/j.pecon.2021.07.007.
Fang Y, Zhang X, Wei H, Wang D, Chen R, Wang L, Gu W. 2021. Predicting the invasive trend of exotic plants in China based on the ensemble model under climate change: A case for three invasive plants of Asteraceae. Sci Total Environ 756: 143841. DOI: 10.1016/j.scitotenv.2020.143841.
Feng X, Park DS, Walker C, Peterson AT, Merow C, Pape? M. 2019. A checklist for maximizing reproducibility of ecological niche models. Nat Ecol Evol 3: 1382-1395. DOI: 10.1038/s41559-019-0972-5.
Foxcroft LC, Pysek P, Richardson DM, Genovesi P, MacFadyen S. 2017. Plant invasion science in protected areas: Progress and priorities. Biol Invasions 19: 1353-1378. DOI: 10.1007/s10530-016-1367-z.
Gaol ML, Mudita IW. 2020. The structure, composition, and health of remnant forest vegetation of West Timor, Indonesia. Asian J Environ Ecol 13 (4): 1-14. DOI: 10.9734/AJEE/2020/v13i430186.
Guo W, Liu Y, Ng WL, Liao PC, Huang BH, Li W, Li C, Huang XSY. 2018. Comparative transcriptome analysis of the invasive weed Mikania micrantha with its native congeners provides insights into genetic basis underlying successful invasion. BMC Genom 19: 392. DOI: 10.1186/s12864-018-4784-9.
Guo ZXY, Ren H, Wei X, Wen S, Ouyang K, Long J, Wang J, Li D, Hui D. 2021. Distribution and conservation status of Camellia longzhouensis (Theaceae), a critically endangered plant species endemic to southern China. Glob Ecol Conserv 27: e01585. DOI: 10.1016/j.gecco.2021.e01585.
Hendrati RL, Suwandi, Margiyanti. 2014. Budidaya Kaliandra (Calliandra calothyrsus) untuk Bahan Baku Sumber Energi. IPB Press, Bogor. [Indonesian]
Hewitt A, Holford P, Renshaw A, Haigh A, Morris EC. 2014. Plant-level fecundity and andromonoecy in three common (Melaleuca styphelioides, M. thymifolia, M. nodosa) and one rare (M. deanei) Melaleuca (Myrtaceae) species of the Sydney region. Aust J Bot 62: 276-285. DOI: 10.1071/BT14081.
Ismail AY, Supartono T, Kusmana C, Sumekar Y, Aminudin S, Hendrayana Y, Nurlaila A. 2022. Phenology of flowering and fruiting of Calliandra (Calliandra spp.) species in submontane forest, Indonesia. Res Crop 23 (1): 172-179. DOI: 10.31830/2348-7542.2022.024.
Jelbert K, Stott I, McDonald RA, Hodgson D. 2015. Invasiveness of plants is predicted by size and fecundity in the native range. Ecol Evol 5 (10): 1933. DOI: 10.1002/ece3.1432.
Kannan R, Shackleton CM, Krishnan S, Shaanker RU. 2016. Can local use assist in controlling invasive alien species in tropical forests? The case of Lantana camara in southern India. For Ecol Manag 376: 166-173. DOI: 10.1016/j.foreco.2016.06.016.
Kannan R, Shackleton CM, Shaanker RU. 2014. Invasive alien species as drivers in socio-ecological systems: Local adaptations towards use of Lantana in Southern India. Environ Dev Sustain 16: 649-669. DOI: 10.1007/s10668-013-9500-y.
Kariyawasam CS, Kumar L, Ratnayake SS. 2020. Potential risks of plant invasions in protected areas of Sri Lanka under climate change with special reference to threatened vertebrates. Climate 8 (51): 2-20. DOI: 10.3390/cli8040051.
Katz TS, Zellmer AJ. 2018. Comparison of model selection technique performance in predicting the spread of newly invasive species: A case study with Batrachochytrium salamandrivorans. Biol Invasions 20 (8): 2107-2119. DOI: 10.1007/s10530-018-1690-7.
Keith DA, Elith J, Simpson CC. 2014. Predicting distribution changes of a mire ecosystem under future climates. Divers Distrib 20: 440-454. DOI: 10.1111/ddi.12173.
Kumar M, Kumar S, Verma AK, Joshi RK, Garkoti SC. 2021. Invasion of Lantana camara and Ageratina adenophora alters the soil physico-chemical characteristics and microbial biomass of chir pine forests in the central Himalaya, India. Catena 207: 105624. DOI: 10.1016/j.catena.2021.105624.
Lefkovitch LP. 1965. The study of population growth in organisms grouped by stages. Biometrics 21 (1): 1-18. DOI: 10.2307/2528348.
Li S, Liu Y, Yang H, Yu X, Zhang Y, Wang C. 2021. Integrating ecosystem services modeling into effectiveness assessment of national protected areas in a typical arid region in China. J Environ Manag 297: 113408. DOI: 10.1016/j.jenvman.2021.113408.
Li T, Xiong Q, Luo P, Zhang Y, Gu X, Lin B. 2020. Direct and indirect effects of environmental factors, spatial constraints, and functional traits on shaping the plant diversity of montane forests. Ecol Evol 10 (1): 557-568. DOI: 10.1002/ece3.5931.
Macqueen D. 1992. Calliandra calothyrsus: Implications of plant taxonomy, ecology and biology for seed collection. Commonwealth For Rev 71 (1): 20-34.
Macqueen D. 1996. Calliandra taxonomy and distribution, with particular reference to the series Racemosae. International Workshop on the Genus Calliandra. Bogor, 23-27 January 1996.
Marques NCS, Machado RB, Aguiar LMS, Mendonca-Galvão L, Tidon R, Vieira EM, Marini-Filho OJ, Bustamante M. 2022. Drivers of change in tropical protected areas: Long-term monitoring of a Brazilian biodiversity hotspot. Perspect Ecol Conserv 20 (2): 69-78. DOI: 10.1016/j.pecon.2022.02.001.
McCarthya C, Banfillb J, Hoshino B. 2021. National parks, protected areas and biodiversity conservation in NorthKorea: Opportunities for international collaboration. J Asia-Pacific Biodivers 14: 290-298. DOI: 10.1016/j.japb.2021.05.006.
Merow C, Smith MJ, Jr TCE, Guisan A, McMahon SM, Normand S, Thuiller W, Wüest RO, Zimmermann NE, Elith J. 2014. What do we gain from simplicity versus complexity in speciesdistribution models? Ecography 37: 1267-1281. DOI: 10.1111/ecog.00845.
Moodley D, Foxcroft LC, Novoa A, Pyšková K, Pergl J, Pyšek P. 2020. Invasive alien species add to the uncertain future of protected areas. NeoBiota 57: 1-5. DOI: 10.3897/neobiota.57.52188.
Orwa C, Mutua A, Kindt R, Simons A, Jamnadass R. 2009. Agroforestry Database: A Tree Reference and Selection Guide Version 4.0. https://www.worldagroforestry.org/publication/agroforestree-database-tree-reference-and-selection-guide-version-40.
Osunkoya OO, Perrett C. 2010. Lantana camara L. (Verbenaceae) invasion effects on soil physicochemical properties. Biol Fertil Soils 47 (3): 349-355. DOI: 10.1007/s00374-010-0513-5.
Panda RM, Behera MD, Roy PS. 2017. Assessing distributions of two invasive species of contrasting habits in future climate. J Environ Manag 213: 478-488. DOI: 10.1016/j.jenvman.2017.12.053.
Peterson, Townsend A, Anamza T. 2015. Ecological niches and present and historical geographic distributions of species: A 15-year review of frameworks, results, pitfalls, and promises. Folia Zoologica 64 (3): 207-217. DOI: 10.25225/fozo.v64.i3.a3.2015.
Phillips SJ, Anderson RP, Dudík M, Schapire RE, Blair ME. 2017. Opening the black box: An open-source release of Maxent. Ecography 40: 887-893. DOI: 10.1111/ecog.03049.
Rai PK. 2012. Assessment of multifaceted environmental issues and model development of an Indo-Burma hotspot region. Environ Monit Assess 184: 113-131. DOI: 10.1007/s10661-011-1951-8.
Rai PK. 2015. Paradigm of plant invasion: Multifaceted review on sustainable management. Environ Monit Assess 187: 759. DOI: 10.1007/s10661-015-4934-3.
Ranjitkar S, Sujakhu NM, Lu Y, Wang Q, Wang M, He J, Mortimer PE, Xu J, Kindt R, Zomer RJ. 2016. Climate modelling for agroforestry species selection in Yunnan Province, China. Environ Model Softw 76: 263-272. DOI: 10.1016/j.envsoft.2015.10.027.
Ratnayake RMCS. 2014. Why plant species become invasive? Characters related to successful biological invasion. Proceedings of the National Symposium on Invasive Alien Species (IAS). Sri Lanka, 27 November 2014.
Reaser JK, Burgiel SW, Kirkey J, Brantley KA, Veatch SD, Burgos-Rodr?´guez J. 2020. The Early Detection of and Rapid Response (EDRR) to invasive species: A conceptual framework and federal capacities assessment. Biol Invasions 22: 1-19. DOI: 10.1007/s10530-019-02156-w.
Sæþórsdóttir AD, Wendt M, Ólafsdóttir R. 2022. Tourism industry attitudes towards National Parks and Wilderness: A case study from the Icelandic Central Highlands. Land 11: 2066. DOI: 10.3390/land11112066.
Saranya KRL, Lakshmi TV, Reddy CS. 2021. Predicting the potential sites of Chromolaena odorata and Lantana camara in forest landscape of Eastern Ghats using habitat suitability models. Ecol Inform 66: 101455. DOI: 10.1016/j.ecoinf.2021.101455.
Setyawati T, Narulita S, Bahri IP, Raharjo GT. 2015. A Guide Book to Invasive Alien Plant Species in Indonesia. Research, Development and Innovation Agency, Bogor.
Shrestha UB, Sharma KP, Devkota A, Siwakoti M, Shrestha BB. 2018. Potential impact of climate change on the distribution of six invasive alien plants in Nepal. Ecol Indic 95: 99-107. DOI: 10.1016/j.ecolind.2018.07.009.
Srivastava V, Lafond V, Griess V. C. 2019. Species Distribution Models (SDM): Applications, benefits and challenges in invasive species management. CABI Rev 14 (20): 1-13. DOI: 10.1079/PAVSNNR201914020.
Supartono T, Adhya I, Kosasih D, Wildani W. 2023. Tree species diversity adapted to Pinus merkusii forests in Gunung Ciremai National Park, West Java, Indonesia. Biodiversitas 24 (8): 4314-4323. DOI: 10.13057/biodiv/d240813.
Takada T, Kawai Y. 2020. An analysis of elasticity vector distribution specific to semelparous species using randomly generated population projection matrices and the COMPADRE Plant Matrix Database. Ecol Model 431: 109125. DOI: 10.1016/j.ecolmodel.2020.109125.
Tjitrosoedirjo S, Setyawati T, Sunardi, Subiakto A, Irianto RS, Garsetiasih R. 2016. Pedoman Analisis Risiko Tumbuhan Asing Invasif (Pre Border). FORIS Indonesia, Pusat Penelitian dan Pengembangan Hutan, Kementerian Lingkungan Hidup dan Kehutanan Republik Indonesia, Bogor. [Indonesian]
Vries C, Desharnais RA, Caswell H. 2020. A matrix model for density-dependent selection in stage-classified populations, with application to pesticide resistance in Tribolium. Ecol Model 416: 108875. DOI: 10.1016/j.ecolmodel.2019.108875.
Wang R, Kang X, Quan G, Zhang J. 2015a. Influence of Lantana camara on soil II effects of Lantana camara leaf litter on plants and soil properties. Allelopath J 35 (2): 207-216.
Wang R, Quan G, Kang X, Zhang J, Qin Z. 2015b. Influence of Lantana camara on soil I effects on soil chemical properties, enzymes and microorganisms. Allelopathy J 35 (2): 197-206.
Wang WJ, He HS, III FRT, Spetich MA, Fraser J. S. 2018. Effects of species biological traits and environmental heterogeneity on simulated tree species distribution shifts under climate change. Sci Total Environ 634: 1214-1221. DOI: 10.1016/j.scitotenv.2018.03.353.
Xiong Q, Luo X, Liang P, Xiao Y, Xiao Q, Sun H, Pan K, Wang L, Li L, Pang X. 2020. Fire from policy, human interventions, or biophysical factors? Temporal–spatial patterns of forest fire in southwestern China. For Ecol Manag 474: 118381. DOI: 10.1016/j.foreco.2020.118381.
Xiong Q, Xiao YAHW, Liang P, Liu C, Zhang L, Bikram P, Pan KB, Chen J. 2019. Monitoring the impact of climate change and human activities on grassland vegetation dynamics in the northeastern Qinghai-Tibet Plateau of China during 2000-2015. J Arid Land 11: 637-651. DOI: 10.1007/s40333-019-0061-2.
Yan H, Feng L, Zhao Y, Feng L, Zhu C, Qu Y. 2020. Predicting the potential distribution of an invasive species, Erigeron canadensis L., in China with a maximum entropy model. Glob Ecol Conserv 21: e00822. DOI: 10.1016/j.gecco.2019.e00822.
Yang AL, Zhang WJ, Qi FJ, He MR. 2021. Research progress of national park community management based on web of science. Proc Intl Conf Soc Sci High Educ 598: 372-379. DOI: 10.2991/assehr.k.211122.119.
Yudaputra A, Sudarmono. 2019. Projecting the niche (suitable habitats) of invasive species: Approaches, challenges, and consequences. 3rd SATREPS Conference, Bogor, 18-19 October 2018.
Yudaputra A. 2020. Modelling potential current distribution and future dispersal of an invasive species Calliandra calothyrsus in Bali Island, Indonesia. Biodiversitas 21 (2): 674-682. DOI: 10.13057/biodiv/d210233.

Most read articles by the same author(s)

1 2 > >>