Superoxide dismutase (SOD) activity of Ceriops zippeliana in Segara Anakan Cilacap (Indonesia) under heavy metal accumulation

##plugins.themes.bootstrap3.article.main##

DHUTA SUKMARANI
ELLY PROKLAMASININGSIH
AGUS HERY SUSANTO
ERWIN RIYANTO ARDLI
EMING SUDIANA
EDY YANI

Abstract

Abstract. Sukmarani D, Proklamasiningsih E, Susanto AH, Ardli ER, SudianaE, Yani E. 2021. Superoxide dismutase (SOD) activity of Ceriops zippelianaBlume in Segara Anakan Cilacap (Indonesia) under heavy metal accumulation. Biodiversitas 22:5627-5635. Ceriops zippeliana Blumeis a true mangrove species that occupy habitats exposed to environmental stress, such as salinity and heavy metal contamination, which is the case in Segara Anakan Cilacap, Central Java. Both salinity and heavy metal stress can lead to the production of reactive oxygen species (ROS), which can be detrimental to plants if they are present in excess. Plants have defense mechanisms to prevent excessive ROS, one of which is by the use of superoxide dismutase (SOD) enzyme. This study aims to explain the accumulation of heavy metals (Pb, Cd, Cu, and Zn) in C. zippeliana as well as the translocation of the metals. In addition, the correlation between heavy metal concentrations and SOD activity in C. zippeliana is reported. Plant samples were randomly collected from Segara Anakan, Cilacap. The analysis was conducted using the bio-concentration factor (BCF), translocation factor (TF), and linear regression in the SPSS program. It was found that Pb, Cu, and Zn levels in Segara Anakan Cilacap sediments were still within acceptable limits, while Cd level was moderately polluting. Metal accumulation was higher in the branches of C. zippeliana compared to those in roots and leaves. The SOD activity of C. zippeliana in Segara Anakan is seemingly not related to metal contents in plant parts.

##plugins.themes.bootstrap3.article.details##

References
Agoramoorthy, G., Chen, F. A., & Hsu, M. J. (2008). Threat of Heavy Metal Pollution in Halophytic and Mangrove Plants of Tamil Nadu, India. Environmental Pollution, 155(2), 320–326. https://doi.org/10.1016/j.envpol.2007.11.011
Alscher, R. G., Erturk, N., & Heath, L. S. (2002). Role of Superoxide Dismutases (SODs) in Controlling Oxidative Stress in Plants. Journal of Experimental Botany, 53(372), 1331–1341. https://doi.org/10.1093/jxb/53.372.1331
Ardli, E. R., & Wolff, M. (2009). Land Use and Land Cover Change Affecting Habitat Distribution in the Segara Anakan Lagoon, Java, Indonesia. Regional Environmental Change, 9(4), 235–243. https://doi.org/10.1007/s10113-008-0072-6
Arias, J. A., Peralta-Videa, J. R., Ellzey, J. T., Ren, M., Viveros, M. N., & Gardea-Torresdey, J. L. (2010). Effects of Glomus deserticola Inoculation on Prosopis: Enhancing Chromium and Lead Uptake and Translocation as Confirmed by X-ray Mapping, ICP-OES and TEM techniques. Environmental and Experimental Botany, 68(2), 139–148. https://doi.org/10.1016/j.envexpbot.2009.08.009
Arumugam, G., Rajendran, R., Ganesan, A., & Sethu, R. (2018). Bioaccumulation and Translocation of Heavy Metals in Mangrove Rhizosphere Sediments to Tissues of Avicenia marina – A Field Study From Tropical Mangrove Forest. Environmental Nanotechnology, Monitoring and Management, 10(August), 272–279. https://doi.org/10.1016/j.enmm.2018.07.005
Babukutty, Y., & Chacko, J. (1995). Chemical Partitioning and Bioavailability of Lead and Nickel in an Estuarine System. Environmental Toxicology and Chemistry, 14(3), 427–434. https://doi.org/10.1002/etc.5620140312
Backer, A., & Van Den Brink, B. (1963). Flora of Java (Spermatophytes Only) (Volume I). N.V.P. Noordhoff-Groningen.
Balafrej, H., Bogusz, D., Abidine Triqui, Z. El, Guedira, A., Bendaou, N., Smouni, A., & Fahr, M. (2020). Zinc Hyperaccumulation in Plants: A Review. Plants, 9(5), 1–22. https://doi.org/10.3390/plants9050562
Bharti, K., Pandey, N., Shankhdhar, D., Srivastava, P. C., & Shankhdhar, S. C. (2014). Effect of Different Zinc Levels on Activity of Superoxide Dismutases & Acid Phosphatases and Organic Acid Exudation on Wheat Genotypes. Physiology and Molecular Biology of Plants, 20(1), 41–48. https://doi.org/10.1007/s12298-013-0201-7
Booher, L. E., & Zampello, F. C. (1994). Lead Exposure in a Petroleum Refinery During Maintenance and Repair Activities. Applied Occupational and Environmental Hygiene, 9(2), 125–131. https://doi.org/10.1080/1047322X.1994.10388283
Bujang, M. A., & Baharum, N. (2016). Sample Size Guideline for Correlation Analysis. World Journal of Social Science Research, 3(1), 37–46. https://doi.org/10.22158/wjssr.v3n1p37
Cakmak, I., Ozturk, L., Eker, S., Torun, B., Kalfa, H. I., & Yilmaz, A. (1997). Concentration of Zinc and Activity of Copper/Zinc-Superoxide Dismutase in Leaves of Rye and Wheat Cultivars Differing in Sensitivity to Zinc Deficiency. Journal of Plant Physiology, 151(1), 91–95. https://doi.org/10.1016/S0176-1617(97)80042-9
De Agostini, A., Cortis, P., & Cogoni, A. (2020). Monitoring of air pollution by moss bags around an oil refinery: A critical evaluation over 16 years. Atmosphere, 11(3), 1–14. https://doi.org/10.3390/atmos11030272
Drazkiewicz, M., Ewa Skórzy?ska-Polit, S.-P. E., & Krupa, Z. (2004). Copper-induced Oxidative Stress and Antioxidant Defence in Arabidopsis thaliana. BioMetals, 17(4), 379–387. https://doi.org/10.1023/B
Gao, S., Yan, R., Cao, M., Yang, W., Wang, S., & Chen, F. (2008). Effects of Copper on Growth, Antioxidant Enzymes and Phenylalanine Ammonia-Lyase Activities in Jatropha curcas L. Seedling. Plant, Soil and Environment, 54(3), 117–122. https://doi.org/10.17221/2688-pse
Ghosh, R., & Roy, S. (2019). Cadmium Toxicity in Plants: Unveiling the Physicochemical and Molecular Aspects. In Cadmium Tolerance in Plants: Agronomic, Molecular, Signaling, and Omic Approaches (pp. 223–246). Elsevier Inc. https://doi.org/10.1016/B978-0-12-815794-7.00008-4
Gómez, J. M., Jiménez, A., Olmos, E., & Sevilla, F. (2004). Location and effects of Long-Term NaCl Stress on Superoxide Dismutase and Ascorbate Peroxidase Isoenzymes of Pea (Pisum sativum cv. puget) Chloroplasts. Journal of Experimental Botany, 55(394), 119–130. https://doi.org/10.1093/jxb/erh013
Hassan, M. J., Raza, M. A., Rehman, S. U., Ansar, M., Gitari, H., Khan, I., Wajid, M., Ahmed, M., Shah, G. A., Peng, Y., & Li, Z. (2020). Effect of Cadmium Toxicity on Growth, Oxidative Damage, Antioxidant Defense System and Cadmium Accumulation in Two Sorghum Cultivars. Plants, 9(11), 1–14. https://doi.org/10.3390/plants9111575
He, Z., Shentu, Yang, X., Baligar, Zhang, T., & Stoffella, &. (2015). Heavy Metal Contamination of Soils: Sources, Indicators, and Assessment. Journal of Environmental Indicators, 9(Table 2), 17–18.
Hidayati, N. V., Siregar, A. S., Sari, L. K., Putra, G. L., Hartono, Nugraha, I. P., & Syakti, A. D. (2014). Pendugaan Tingkat Kontaminasi Logam Berat Pb , Cd Dan Cr Pada. Omni-Akuatika, XIII(18), 30–39.
Hilmi, E., Siregar, A. S., & Syakti, A. D. (2017). Lead (Pb) Distribution on Soil, Water and Mangrove Vegetation Matrices in Eastern Part of Segara Anakan Lagoon, Cilacap. Omni-Akuatika, 13(2), 25–38.
Holzmeister, C., Gaupels, F., Geerlof, A., Sarioglu, H., Sattler, M., Durner, J., & Lindermayr, C. (2015). Differential Inhibition of Arabidopsis Superoxide Dismutases by Peroxynitrite-mediated Tyrosine Nitration. Journal of Experimental Botany, 66(3), 989–999. https://doi.org/10.1093/jxb/eru458
Hu, J. Z., Shi, G. X., Xu, Q. S., Wang, X., Yuan, Q. H., & Du, K. H. (2007). Effects of Pb 2+ on the Active Oxygen-Scavenging Enzyme Activities and Ultrastructure in Potamogeton crispus Leaves. Russian Journal of Plant Physiology, 54(3), 414–419. https://doi.org/10.1134/S1021443707030181
Jadhav, S., Nimbalkar, S., Kulkarni, A., & Madhavi, D. (1996). Lipid Oxidation in Biological and Food Systems. In D. L. Madhavi, S. S. Deshpande, & D. K. Salunkhe (Eds.), Food Antioxidants Technological: Toxicological and Health Perspectives (1st ed., pp. 5–64). CRC Press. https://doi.org/10.1201/9781482273175
Jadia, C. D., & Fulekar, M. H. (2008). Phytotoxicity and Remediation of Heavy Metals by Fibrous Root Grass (Sorghum). Journal of Applied Biosciences, 10(1), 491–499.
Kabata-Pendias, A., & Pendias, H. (2000). Trace Elements in Soils and Plants. In British Medical Journal (3rd ed.). CRC Press. https://doi.org/10.1136/bmj.2.4640.1355-a
Karimi, P., Khavari-Nejad, R. A., Niknam, V., Ghahremaninejad, F., & Najafi, F. (2012). The Effects of Excess Copper on Antioxidative Enzymes, Lipid Peroxidation, Proline, Chlorophyll, and Concentration of Mn, Fe, and Cu in Astragalus neo-mobayenii. The Scientific World Journal, 2012, 1–6. https://doi.org/10.1100/2012/615670
Karuppanapandian, T., Moon, J. C., Kim, C., Manoharan, K., & Kim, W. (2011). Reactive Oxygen Species in Plants: Their Generation, Signal Transduction, and Scavenging Mechanisms. Australian Journal of Crop Science, 5(6), 709–725.
Kozlowski, T. T., & Pallardy, S. G. (2002). Acclimation and Adaptive Responses of Woody Plants to Environmental Stresses. The Botanical Review, 68(2), 270–334.
Kumar, D., Singh, D., Barman, S., & Kumar, N. (2016). Heavy Metal and Their Regulation in Plant System: An Overview. In A. Singh, S. M. Prasad, & R. P. Singh (Eds.), Plant Responses to Xenobiotics (Issue December, pp. 1–346). Springer. https://doi.org/10.1007/978-981-10-2860-1
Lacerda, L. D., Carvalho, C. E. V., Tanizaki, K. F., Ovalle, A. R. C., & Rezende, C. E. (1993). The Biogeochemistry and Trace Metals Distribution of Mangrove Rhizospheres. Biotropica, 25(3), 252. https://doi.org/10.2307/2388783
Loring, D. H., & Rantala, R. T. T. (1992). Manual for the Geochemical Analyses of Marine Sediments and Suspended Particulate Matter. Earth Science Reviews, 32(4), 235–283. https://doi.org/10.1016/0012-8252(92)90001-A
Luo, H., Li, H., Zhang, X., & Fu, J. (2011). Antioxidant Responses and Gene Expression in Perennial Ryegrass (Lolium perenne L.) under Cadmium Stress. Ecotoxicology, 20(4), 770–778. https://doi.org/10.1007/s10646-011-0628-y
MacFarlane, G. R., & Burchett, M. D. (2002). Toxicity, Growth and Accumulation Relationships of Copper, Lead and Zinc in The Grey Mangrove Avicennia marina (Forsk.) Vierh. Marine Environmental Research, 54(1), 65–84. https://doi.org/10.1016/S0141-1136(02)00095-8
Marchiol, L., Assolari, S., Sacco, P., & Zerbi, G. (2004). Phytoextraction of Heavy Metals by Canola (Brassica napus) and Radish (Raphanus sativus) Grown on Multicontaminated Soil. Environmental Pollution, 132(1), 21–27. https://doi.org/10.1016/j.envpol.2004.04.001
Meloni, D. A., Oliva, M. A., Martinez, C. A., & Cambraia, J. (2003). Photosynthesis and Activity of Superoxide Dismutase, Peroxidase and Glutathione Reductase in Cotton Under Salt Stress. Environmental and Experimental Botany, 49(1), 69–76. https://doi.org/10.1016/S0098-8472(02)00058-8
Mishra, S., Srivastava, S., Tripathi, R. D., Kumar, R., Seth, C. S., & Gupta, D. K. (2006). Lead Detoxification by Coontail (Ceratophyllum demersum L.) Involves Induction of Phytochelatins and Antioxidant System in Response to Its Accumulation. Chemosphere, 65(6), 1027–1039. https://doi.org/10.1016/j.chemosphere.2006.03.033
Noulas, C., Tziouvalekas, M., & Karyotis, T. (2018). Zinc in Soils, Water and Food Crops. Journal of Trace Elements in Medicine and Biology, 49(February), 252–260. https://doi.org/10.1016/j.jtemb.2018.02.009
Parida, A., Das, A., & Mohanty, P. (2004). Investigations on the Antioxidative Defence Responses to NaCl Stress in a Mangrove, Bruguiera Parviflora: Differential Regulations of Isoforms of Some Antioxidative Enzymes. Plant Growth Regulation, 42(3), 213–226. https://doi.org/10.1023/B
Patra, R. C., Rautray, A. K., & Swarup, D. (2011). Oxidative Stress in Lead and Cadmium Toxicity and Its Amelioration. Veterinary Medicine International, 2011, 1–9. https://doi.org/10.4061/2011/457327
Pinto, A. P., Mota, A. M., De Varennes, A., & Pinto, F. C. (2004). Influence of Organic Matter on The Uptake of Cadmium, Zinc, Copper and Iron by Sorghum Plants. Science of the Total Environment, 326(1–3), 239–247. https://doi.org/10.1016/j.scitotenv.2004.01.004
Pourrut, B., Shahid, M., Dumat, C., Winterton, P., & Pinelli, E. (2011). Lead Uptake, Toxicity, and Detoxification in Plants. Reviews of Environmental Contamination and Toxicology, 213(May 2014), 113–136. https://doi.org/10.1007/978-1-4419-9860-6_4
Qiu, Y. W., Yu, K. F., Zhang, G., & Wang, W. X. (2011). Accumulation and Partitioning of Seven Trace Metals in Mangroves and Sediment Cores from Three Estuarine Wetlands of Hainan Island, China. Journal of Hazardous Materials, 190(1–3), 631–638. https://doi.org/10.1016/j.jhazmat.2011.03.091
Rajkumar, S., Praveen, M. R., Gajjar, D., Vasavada, A. R., Alapure, B., Patel, D., & Kapur, S. (2008). Activitas of Superoxide Dismutase Isoenzymes in Epithel Cells Derived From Different Types of Age-Related Cataract. Journal of Cataract and Refractive Surgery, 34(3), 470–474. https://doi.org/10.1016/j.jcrs.2007.10.044
Ramanathan, A. L., Subramanian, V., Ramesh, R., Chidambaram, S., & James, A. (1999). Environmental Geochemistry of the Pichavaram Mangrove Ecosystem (tropical), Southeast Coast of India. Environmental Geology, 37(3), 223–233. https://doi.org/10.1007/s002540050380
Randox Laboratories, L. (2009). RANSOD Manual. Randox Laboratories Ltd.
Rodriguez, H. G., Mondal, B., Sarkar, N. C., Ramaswamy, A., Rajkumar, D., & Maiti, R. K. (2012). Comparative Morphology and Anatomy of Few Mangrove Species in Sundarbans, West Bengal, India and its Adaptation to Saline Habitat. International Journal of Bio-Resource and Stress Management, 3(1), 1–17.
Sanita’ di Toppi, L., & Gabbrielli, R. (1999). Response to Cadmium in Higher Plants. Environmental and Experimental Botany, 41(2), 105–130. https://doi.org/10.1016/S0040-4039(02)00681-0
Shah, F. U. R., Ahmad, N., Masood, K. R., Peralta-Videa, J. R., & Ahmad, F. ud D. (2010). Heavy Metal Toxicity in Plants Fazal. In M. Ashraf, M. S. A. Ahmad, & M. Ozturk (Eds.), Plant Adaptation and Phytoremediation (Issue July, pp. 71–97). Springer. https://doi.org/10.1007/978-90-481-9370-7
Siregar, T. H., Priyanto, N., Putri, A. K., Rachmawati, N., Triwibowo, R., Dsikowitzky, L., & Schwarzbauer, J. (2016). Spatial Distribution and Seasonal Variation of the Trace Hazardous Element Contamination in Jakarta Bay, Indonesia. Marine Pollution Bulletin, 110(2), 634–646. https://doi.org/10.1016/j.marpolbul.2016.05.008
Smolders, E., & Mertens, J. (2013). Cadmium. In B. J. Alloway (Ed.), Heavy Metals in Soils: Trace Metals and Metalloids in Soils and their Bioavailability (pp. 283–311). Springer. https://doi.org/10.1016/s0165-9936(96)90032-1
Srikanth, S., Lum, S. K. Y., & Chen, Z. (2016). Mangrove Root: Adaptations and Ecological Importance. Trees - Structure and Function, 30(2), 451–465. https://doi.org/10.1007/s00468-015-1233-0
Surya, S., & Hari, N. (2017). Leaf Anatomical Adaptation of Some True Mangrove Species in Kerala. International Journal of Pharmaceutical Science and Research, 2(3), 11–14.
Syakti, A. D., Demelas, C., Hidayati, N. V., Rakasiwi, G., Vassalo, L., Kumar, N., Prudent, P., & Doumenq, P. (2015). Heavy Metal Concentrations in Natural and Human-impacted Sediments of Segara Anakan Lagoon, Indonesia. Environmental Monitoring and Assessment, 187(1). https://doi.org/10.1007/s10661-014-4079-9
Takarina, N. D., & Pin, T. G. (2017). Bioconcentration Factor (BCF) and Translocation Factor (TF) of Heavy Metals in Mangrove Trees of Blanakan Fish Farm. Makara Journal of Science, 21(2), 77–81. https://doi.org/10.7454/mss.v21i2.7308
Thanh-Nho, N., Marchand, C., Strady, E., Vinh, T. Van, & Nhu-Trang, T. T. (2018). Metals Geochemistry and Ecological Risk Assessment in A Tropical Mangrove (Can Gio, Vietnam). Chemosphere, 219, 365–382. https://doi.org/10.1016/j.chemosphere.2018.11.163
Tiryakioglu, M., Eker, S., Ozkutlu, F., Husted, S., & Cakmak, I. (2006). Antioxidant Defense System and Cadmium Uptake in Barley Genotypes Differing in Cadmium Tolerance. Journal of Trace Elements in Medicine and Biology, 20(3), 181–189. https://doi.org/10.1016/j.jtemb.2005.12.004
Usman, A. R. A., Alkredaa, R. S., & Al-Wabel, M. I. (2013). Heavy metal contamination in Sediments and Mangroves from the Coast of Red Sea: Avicennia Marina as Potential Metal Bioaccumulator. Ecotoxicology and Environmental Safety, 97, 263–270. https://doi.org/10.1016/j.ecoenv.2013.08.009
Van Breusegem, F., Vranová, E., Dat, J. F., & Inzé, D. (2001). The Role of Active Oxygen Species in Plant Signal Transduction. Plant Science, 161(3), 405–414. https://doi.org/10.1016/S0168-9452(01)00452-6
Widowati, W., Safitri, R., Rumumpuk, R., & Siahaan, M. (2005). Penapisan Aktivitas Superoksida Dismutase pada Berbagai Tanaman. Jkm, 5(1), 33–48.
Wuana, R. A., & Okieimen, F. E. (2011). Heavy Metals in Contaminated Soils: A Review of Sources, Chemistry, Risks and Best Available Strategies for Remediation. ISRN Ecology, 2011(October), 1–20. https://doi.org/10.5402/2011/402647
Yruela, I. (2009). Copper in Plants: Acquisition, Transport and Interactions. Functional Plant Biology, 36(5), 409–430. https://doi.org/10.1071/FP08288
Yuwono, E., Jennerjahn, T., Nordhaus, I., Riyanto, E., Sastranegara, M., & Pribadi, R. (2007). Ecological Status of Segara Anakan, Indonesia: A Mangrove-fringed Lagoon Affected by Human Activities. Asian Journal of Water, Environment and Pollution, 4(1), 61–70.

Most read articles by the same author(s)

1 2 > >>