Morphology and morphometric of Tetragonula biroi bees at three different altitudes in South Sulawesi, Indonesia

##plugins.themes.bootstrap3.article.main##

ANDI PRASTIYO
SITTI NURAENI
BUDIAMAN

Abstract

Abstract. Prastiyo A, Nuraeni S, Budiaman. 2024. Morphology and morphometric of Tetragonula biroi bees at three different altitudes in South Sulawesi, Indonesia. Biodiversitas 25: 1993-2002. Tetragonula biroi Friese 1898 is a stingless bee species that plays an essential role in pollination and environmental conservation. This research is important because bees play a crucial role as pollinators for the sustainability of plants, and morphometric measurements can reveal patterns of adaptation and the potential production of products generated by these bees. This research aims to analyze the morphological and morphometric variations of T. biroi at three different altitudes in South Sulawesi. The study was conducted from November 2023 to January 2024, with sampling points in lowland (158 meters above sea level or masl), midland (417 masl), and highland (709 masl), using Principal Component Analysis (PCA) test using XLSTAT and one-way analysis of variance (ANOVA) test using program SPSS. Observations of T. biroi morphology at the three locations were generally similar, with a black body color tinged with brown and characteristic hamuli numbering five. The morphometric analysis involved measuring body dimensions of T. biroi across 35 characters/sections of the external body, and the one-way ANOVA test results showed that the dominant characters significantly influencing were body length (BL) and length of fore wing, including tegula (WL1). T. biroi bees at lowlands tend to have smaller bodies, measuring 3.73±0.09 mm, while those at higher altitudes tend to have larger bodies, measuring 4.09±0.14 mm. This indicates adaptation to environmental conditions such as temperature (26.75C), humidity (81%), and dominant vegetation (Cocos nucifera L.) in lowland, which influence bee adaptation, as well as in midland and highland areas. This research provides a better understanding of morphological and morphometric variations in T. biroi bees at various altitudes in South Sulawesi. The morphology and morphometrics description of bees is crucial in determining the growth and production of a species.

##plugins.themes.bootstrap3.article.details##

References
Brambach F, Leuschner C, Tjoa A, Culmsee H. 2017. Diversity, endemism, and composition of tropical mountain forest communities in Sulawesi, Indonesia, in relation to elevation and soil properties. Perspect Plant Ecol Ecol Syst 27: 68-79. DOI: 10.1016/j.ppees.2017.06.003.
Carrie R, Andrieu E, Cunningham SA, Lentini PE, Loreau M, Ouin A. 2017. Relationships among ecological traits of wild bee communities along gradients of habitat amount and fragmentation. Ecography 40 (1): 85-97. DOI: 10.1111/ecog.02632.
Chantawannakul P. 2018. Honey bees in modernized South East Asia: Adaptation or extinction?. Environ Resour Use Challenges Contemp Southeast Asia: Trop Ecosyst Transition 7: 169-186. DOI: 10.1007/978-981-10-8881-0_8.
Crone MK, Biddinger DJ, Grozinger CM. 2022. Wild bee nutritional ecology: Integrative strategies to assess foraging preferences and nutritional requirements. Front Sustain Food Syst 6: 1-22. DOI: 10.3389/fsufs.2022.847003.
Dukku UH, Fuchs S, Danailu G, Grünewald B, Tofilski A, Kryger P, Meixner MD. 2022. Morphometric and mitochondrial variation of Apis mellifera L. and its relationship with geographical variables in parts of West and Central Africa. J Apicult Res 61 (3): 296-304. DOI: 10.1080/00218839.2022.2030000.
Engel MS, Rasmussen C, Ayala R, de Oliveira FF. 2023. Stingless bee classification and biology (Hymenoptera, Apidae): A review, with an updated key to genera and subgenera. ZooKeys 1172: 239. DOI: 10.3897/zookeys.1172.104944.
Engel MS, Rasmussen C, Gonzalez VH. 2021. Bees: Phylogeny and classification. Encyclopedia of Social Insects. Springer International Publishing, Cham. DOI: 10.1007/978-3-030-28102-1_14.
Fadiah LH. 2023. Peran lebah madu klanceng (Trigona sp.) dalam mendukung kesejahteraan manusia dan lingkungan. Jurnal Riset Rumpun Ilmu Hewani (Jurrih) 2 (1): 44-55. DOI: 10.55606/jurrih.v2i1.1515. [Indonesian]
Gascon CN, Almazol AE, Garcia RC, Vitoriano MM. 2023. Diversity and spatial distribution of native bees in Mt. Banahaw de Lucban, Philippines. Folia Oecologica 50 (1): 44-54. DOI: 10.2478/foecol-2023-0003.
Gruter C. 2020. Evolution and diversity of stingless bees. Stingless Bees: Their Behaviour, Ecology and Evolution. Springer, Cham. DOI: 10.1007/978-3-030-60090-7_2.
Hamid S. 2023. Morphometric analysis in stingless bee (Apidae meliponini) diversity. IGI Global, Hershey, Pennsylvania. DOI: 10.4018/978-1-6684-6265-2.ch009.
Herrera CM, Núñez A, Aguado LO, Alonso C. 2023. Seasonality of pollinators in montane habitats: Cool?blooded bees for early?blooming plants. Ecol Monographs 93 (2): 1-19. DOI: 10.1002/ecm.1570.
Hines HM, Kilpatrick SK, Mikó I, Snellings D, López-Uribe MM, Tian L. 2022. The diversity, evolution, and development of setal morphologies in bumble bees (Hymenoptera: Apidae: Bombus spp.). PeerJ 10: 1-42. DOI: 10.7717/peerj.14555.
Irshad SS, Sheikh MA, Bhat BA, Ayoub L, Yaqoob M, Siraj M. 2022. Comparative morphometric studies of european honey bee (Apis mellifera L.) at different altitudes of Kashmir Region, India. Intl J Environ Clim Chang 12 (11): 3507-3523. DOI: 10.9734/ijecc/2022/v12i111399.
Jezierski MT, Smith WJ, Clegg SM. 2023. The island syndrome in birds. J Biogeogr 1 (1): 1-16. DOI: 10.1111/jbi.14720.
Ji C, Shi W, Tang J, Ji T, Gao J, Liu F, Shan J, Chen X, Chen C. 2023. Morphometrical analyses revealed high diversity of the eastern honey bee (Apis cerana) in mountains and islands in China. J Apic Res 62 (4): 647-655. DOI: 10.1080/00218839.2023.2205670.
Klingenberg CP. 2014. Studying morphological integration and modularity at multiple levels: Concepts and analysis. Philos Transact Roy Soc B Biol Sci 369 (1649): 20130249. DOI: 10.1098/rstb.2013.0249.
Maebe K, Hart AF, Marshall L, Vandamme P, Vereecken NJ, Michez D, Smagghe G. 2021. Bumblebee resilience to climate change, through plastic and adaptive responses. Glob Chang Biol 27 (18): 4223-4237. DOI: 10.1111/gcb.15751.
Mohammad SM, Mahmud-Ab-Rashid NK, Zawawi N. 2021. Stingless bee-collected pollen (bee bread): Chemical and microbiology properties and health benefits. Molecules 26 (4): 957. DOI: 10.3390/molecules26040957.
Montero?Mendieta S, Tan K, Christmas MJ, Olsson A, Vilà C, Wallberg A, Webster MT. 2019. The genomic basis of adaptation to high?altitude habitats in the eastern honey bee (Apis cerana). Mol Ecol 28 (4): 746-760. DOI: 10.1111/mec.14986.
Novita N, Saepudin R, Sutriyono S. 2013. Analisis morfometrik lebah madu pekerja Apis cerana budidaya pada dua ketinggian tempat yang berbeda. Jurnal Sain Peternakan Indonesia 8 (1): 41-56. DOI: 10.31186/jspi.id.8.1.41-56. [Indonesian]
Nuraeni S, Budiaman B, Sadapotto A, Baharuddin B, Rajab M, Prastiyo A. 2021. Peningkatan kapasitas meliponikultur dengan pengayaan pakan lebah madu di Kelurahan Kahu Kecamatan Bontocani Kabupaten Bone. Jurnal Gema Ngabdi 3 (3): 157-163. DOI: 10.29303/jgn.v3i3.150. [Indonesian]
Nuraeni S, Latif N, Prastiyo A, Armidha N. 2021. A mixture of red kidney beans (Phaseolus vulgaris L.) and bee bread of honey bees (Wallacetrigona incise) as artificial feed for silkworm (Bombyx mori L.). IOP Conf Ser: Earth Environ Sci 886 (1): 012109. DOI: 10.1088/1755-1315/886/1/012109.
Nurdin AS, Saelan E, Nurdin IN. 2021. Composition and nutritional content of honey Trigona sp. in the Tikep forest management unit (KPH) North Moluccas. IOP Conf Ser: Earth Environ Sci 807 (2): 022062). DOI: 10.1088/1755-1315/807/2/022062.
Oliveira SV, Francoy TM, Miranda EA, Oi CA, Ferreira KM, Del-Lama MA. 2023. Geometric morphometrics discriminates Eastern and Western populations of Partamona rustica (Hymenoptera, Apidae, Meliponini) separated by the Sao Francisco River. J Apicult Res 62 (5): 1158-1165. DOI: 10.1080/00218839.2022.2103330.
Ostwald MM, Thrift CN, Seltmann KC. 2023. Phenotypic divergence in an island bee population: Applying geometric morphometrics to discriminate population?level variation in wing venation. Ecol Evol 13 (5): e10085. DOI: 10.1002/ece3.10085.
Prastiyo A, Nuraeni S, Budiaman. 2023. Foraging activities, environmental factors, and increment weight of Tetragonula biroi colonies in beekeeping with different hive materials. IOP Conf Ser: Earth Environ Sci 1277 (1): 012034. DOI: 10.1088/1755-1315/1277/1/012034.
Pratama MN, Agus A, Umami N, Agussalim A, Purwanto H. 2023. Morphometric and molecular identification, domestication, and potentials of stingless bees (Apidae: Meliponini) in Mount Halimun Salak National Park, West Java, Indonesia. Biodiversitas 24 (11): 6107-6118. DOI: 10.13057/biodiv/d241132.
Purba MS, Lamerkabel JS, Patty JA. 2023. Karakter morfologi dan morfometrik lebah sosial (Aphidae) di Pertanian Organik Beema Honey Bogor. Jurnal Pertanian Kepulauan 7 (2): 97-103. DOI: 10.30598/jpk.2023.7.2.97. [Indonesian]
Purwanto H, Soesilohadi RH, Trianto M. 2022. Stingless bees from meliponiculture in South Kalimantan, Indonesia. Biodiversitas 23 (3): 1254-1266. DOI: 10.13057/biodiv/d230309.
Rachmawati RD, Agus A, Umami N, Agussalim A, Purwanto H. 2022. Diversity, distribution, and nest characteristics of stingless bees (Hymenoptera: Meliponini) in Baluran National Park, East Java, Indonesia. Biodiversitas 23 (8): 3890-3901. DOI: 10.13057/biodiv/d230805.
Ribeiro M, Aguiar WM, Nunes LA, da Silva Carneiro L. 2019. Morphometric changes in three species of Euglossini (Hymenoptera: Apidae) in response to landscape structure. Sociobiology 66 (2): 339-347. DOI: 10.13102/sociobiology.v66i2.3779.
Roubik DW. 2023. Stingless bee (Apidae: Apinae: Meliponini) ecology. Ann Rev Entomol 68 (1): 231-256. DOI: 10.1146/annurev-ento-120120-103938.
Suriawanto N, Atmowidi T, Kahono S. 2017. Nesting sites characteristics of stingless bees (Hymenoptera: Apidae) in Central Sulawesi, Indonesia. J Insect Biodivers 5 (10): 1-9. DOI: 10.12976/jib/2017.5.10.
Tarigan E, Syarifuddin S, Djulia E. 2021. Developing the research-based field guides of insect pollinators on tomato plants. Budapest Intl Res Exact Sci J 3 (4): 341-352. DOI: 10.33258/birex.v3i4.2647.
Tercel MP, Veronesi F, Pope TW. 2018. Phylogenetic clustering of wingbeat frequency and flight?associated morphometrics across insect orders. Physiol Entomol 43 (2): 149-157. DOI: 10.1111/phen.12240.