The pathological pebrine diseases of Bombyx mori caused by Nosema bombycis (mNb) in South Sulawesi, Indonesia

##plugins.themes.bootstrap3.article.main##

SITTI NURAENI
ANDANG SURYANA SOMA
ANDI SADAPOTTO
ANDI MUJETAHID
BAHARUDDIN
RYZA JAZID BAHARUDDIN NUR
NURUL HUDA
ABDUL FATTAH

Abstract

Abstract. Nuraeni S, Soma AS, Sadapotto A, Mujetahid A, Baharuddin, Nur RJB, Huda N, Fattah A. 2024. The pathological pebrine diseases of Bombyx mori caused by Nosema bombycis (mNb) in South Sulawesi, Indonesia. Biodiversitas 25: 2990-2995. South Sulawesi is the main producer of raw silk in Indonesia. However, over the past decade, raw silk production has plummeted due to an epizootic of pebrine disease. Pebrine disease is caused by the obligate parasite microsporidium Nosema bombycis Filatova, 1942 (mNb) (Microsporidia: Nosematidae). This study aims to identify mNb spore morphology and pathological characteristics, including disease symptoms, infectivity tests, and pebrine epizootic history. Spore morphology was observed using a light microscope. Infectivity test with a spore concentration of 1×108 mL-1 in 3rd, and 4th instars, inoculation using the smear method on mulberry leaves. Information on pebrine disease rates was obtained from documents of egg certification between 2002 and 2016. The research results show that the spores are oval in shape. The size of the spores can reach a length of 4.57±0.46 µm and a width of 2.24±0.493 µm. The main symptoms of this disease are the change in color of the cuticle to brownish with irregular black spots and non-uniform growth because many fail to molt, and the larval phase increases by 8-10 days. Inoculation in the 3rd instar can cause larval death starting on the second day after inoculation, with a cumulative mortality rate of 64%. Inoculation of the 4th instar, death begins on the eighth day, and a cumulative mortality rate of 52%. The pebrine epizootic in 2010 reached 72.42%, which reduced production by 57%. Understanding the pathological causes of pebrine disease and its history is useful to prevent rather than control the occurrence of the next epizootic.

##plugins.themes.bootstrap3.article.details##

References
Aditya IGMRA, Purwanto H. 2023. Molecular detection of the pathogen of Apis mellifera (Hymenoptera: Apidae) in honey in Indonesia. Biodiversitas 24: 2612-2622. DOI: 10.13057/biodiv/d240513.
Andadari L, Yuniati D, Supriyanto B, Murniati, Suharti S, Widarti A, et al. 2022. Lens on Tropical Sericulture Development in Indonesia: Recent Status and Future Directions for Industry and Social Forestry. Insects13 (10): 913. DOI: 10.3390/ insects13100913.
Araneda X, Cumian M, Morales D. 2015. Distribution, epidemiological characteristics and control methods of the pathogen Nosema ceranae Fries in honey bees Apis mellifera L (Hymenoptera, Apidae). Arch Med Vet 47: 129-138. DOI: 10.4067/S0301-732X2015000200002.
Bagheri M, Zahmatkesh A, Moharrami M, Nematollahian S, Torkaman M. 2023. Diagnosis of Pebrine Disease in Silkworm Using Molecular Methods. Archives of Razi Institute 78 (4): 1185-91. DOI: 10.32592/ARI.2023.78.4.1185.
Bashir I, Sharma SD, Bhat SA. 2011. Screening of different insect pests of mulberry and other agricultural crops for microsporidian infection. International Journal for Biotechnology and Molecular Biology Research 2 (8): 138-142. DOI: 10.5897/IJBMBR.9000035.
Batson BISA. 2016. A dry-fracture technique for the optimum preparation of microsporidia-infected tissues for scanning electron microscopy. Protistology 10 (1): 3–12.
Bhat IA, Buhroo ZI, Bhat MA. 2017. Microsporidiosis in silkworms with particular reference to mulberry silkworm (Bombyx mori L.). International Journal of Entomology Research 2 (1): 01-09.
BPA, 2015. Statistik Pengembangan Persuteraan Alam Tahun 2015. Makassar: Kementerian Kehutanan. Direktorat Jenderal Bina Pengelolaan DAS dan Perhutanan Sosial. [Indonesia].
Bojko J, Aaron W, Reinke, Stentiford GD, Williams B, Rogers MSJ, Bass D. 2022 Microsporidia: a new taxonomic, evolutionary, and ecological synthesis. Trends in Parasitology 38 (8): 642-659. DOI: 10.1016/j.pt.2022.05.007.
Chandrakanth N, Makwana P, Satish L, Rabha M, Sivaprasad V. 2021. Molecular approaches for detection of pebrine disease in sericulture. In Gurtler V, Subrahmanyam G. (Eds.). Methods in microbiology. Academic Press. 49: 47-77. DOI: 10.1016/bs.mim.2021.04.004
Chen J, Guo W, Dang X, Huang Y, Liu F, Meng X, et al. 2017. Easy labeling of proliferative phase and sporogonic phase of microsporidia Nosema bombycis in host cells. PLoS ONE 12 (6): 1-12. DOI: 10.1371/journal.
Chopade P, Raghavendraa CG, Mohana KS, Bhaskar RN. 2021. Assessment of diseases in Bombyx mori silkworm – A survei. Global Transitions Proceedings 2(1): 133-136. DOI: 10.1016/j.gltp.2021.01.019.
Deepika I, Ramesh KV, Kumar I, Singh A, Debnath R et al. 2024. Molecular diagnostics in sericulture: A paradigm shift towards disease diagnosis in silkworms. Entomologia Experimentalis et Applicata 01: 1–11. DOI: 10.1111/eea.13419.
Esvaran V, Jagadish A, Terenius O, Suraporn S, Mishra RK, Ponnuvel KM. 2020. Targeting essential genes of Nosema for the diagnosis of pebrine disease in silkworms. Annals of Parasitology 66 (3): 303–310. DOI: 10.17420/ap6603.268.
Gupta SK, Hossain Z, Nanu MM, Mondal K. 2016. Impact of microsporidian infection on growth and development of silkworm Bombyx mori L. (Lepidoptera: Bombycidae), Agriculture and Natural Resources 50 (5): 388-395. DOI: 10.1016/j.anres.2016.02.005.
Habeanu M, Gheorghe A, Mihalcea T. 2023. Silkworm Bombyx mori - sustainability and economic opportunity, particularly for romania. Agriculture 13 (1209): 1-13. DOI: 10.3390/agriculture13061209.
Hajek AE, Shapiro-Ilan DI. 2018. General concepts in the ecology of invertebrate diseases. In Hajek AE, Shapiro-Ilan DI. (Eds.). Ecology of Invertebrate Diseases. John Wiley & Sons Ltd, Oxford, UK. Pp. 1-17. DOI:10.1002/9781119256106.
Han B, Takvorian PM, Weiss LM. 2020. Invasion of host cells by microsporidia. Front Microbiol 11 (172): 1–16. DOI: 10.3389/fmicb.2020.00172.
Han B, Takvorian PM, Weiss LM. 2022. The function and structure of the microsporidia polar tube. In: Weiss LM, Reinke AW (Eds.). Microsporidia Current Advances in Biology. Experientia Supplementum. 114: 179-188. DOI: 10.1007/978-3-030-93306-7
He Q, Luo J, Xu JZ, Wang CX, Meng XZ, Pan GQ, Li T, Zhou ZY. 2020. Morphology and transcriptome analysis of Nosema bombycis sporoplasm and insights into the initial infection of microsporidia. mSphere 5: e00958-19. DOI: 10.1128/mSphere.00958-19.
He X, Fu Z, Li M, Liu H, Cai S, Man N, Xingmeng L. 2015. Nosema bombycis (Microsporidia) suppresses apoptosis in BmN cells (Bombyx mori). Acta Biochim Biophys Sin, 2015, 47(9), 696–702. DOI: 10.1093/abbs/gmv062.
Huang Q, Chen J, Lv Q, Long M, Pan G, Zhou Z. 2023. Germination of microsporidian spores: The known and unknown. J. Fungi 9 (7), 1-18. DOI: 10.3390/jof9070774.
Hukuhara T. 2017. The epizootiology of pebrine, one of the great scourges of sericulture. J Biochem Biotech 1(1):1-3. http://www.alliedacademies.org/journal-biochemistry-biotechnology/
International Sericultural Comission. 2024. Statistics: Global silk industry. https://inserco.org/en/statistics.
Jagadish A, Khajje D, Tony M, Nilsson A, de Miranda JR, Terenius O, et al. 2021. Development and optimization of a TaqMan assay for Nosema bombycis, causative agent of pebrine disease in Bombyx mori silkworm, based on the ?-tubulin gene. Journal of Microbiological Methods 186 (106238) 1-7. DOI: 10.1016/j.mimet.2021.106238.
Jordan C, de Carvalho VR, Mascarin GM, Oliveira LR, Dunlap CA, Wilcken CF. 2021. First record of a new microsporidium pathogenic to Gonipterus platensis in Brazil. Scientifc Reports 11: 10971. DOI: 10.1038/s41598-021-90041-9.
Kampliw, Monthatong. 2019. Loop Mediated Isothermal Amplification (LAMP) for Nosema bombycis. diagnosis by small subunit Ribosomal RNA (SSU rRNA) gene. Indian J. Agric. Res. 53: 447-452. DOI: 10.18805/IJARe.A-430.
Li Y, Tao M, Ma F, Pan G, Zhou Z, Wu Z. 2015. A monoclonal antibody that tracks endospore formation in the microsporidium Nosema bombycis. PLoS One 10 (3): e0121884. DOI: 10.1371/journal.pone.0121884.
Madhusudhan KN, Aakash K, Gupta VP, Naqvi AH, Singh GP, Sinha AK. 2016. Development of slide agglutination method for detection of Nosema mylitta in tasar silkworm using polyclonal antibody produced against proteins of pebrine spores. International Journal of Pharmaceutics & Drug Analysis 4 (5): 212–216.
McCook ART, Fernandez BC, Barcenas AR. 2021. Description of the main aspects influencing Bombyx mori L. (Lepidoptera: Bombycidae) rearing. Cuban Journal of Agricultural Science 5 (1): 1-13.
Moharrami M, Bagheri M, Nematollahian S. 2022. Detection and characterization of Nosema bombycis using TEM and SEM techniques. Arch Razi Inst. 4: 1473-1480. DOI: 10.22092/ARI.2022.356482.1853.
Pei B, Wang C, Yu B, Xia D, Li T, Zhou Z. 2021. The First Report on the Transovarial Transmission of Microsporidian Nosema bombycis in Lepidopteran Crop Pests Spodoptera litura and Helicoverpa armigera. Microorganisms 9 (7): 1-11. DOI: 10.3390/microorganisms9071442.
Prasobhkumar PP, Venukumar A, Francis CR. Gorthi SS. 2021. Pebrine diagnosis using quantitative phase imaging and machine learning. Journal of Biophotonics 14 (8): e202100044. DOI:10.1002/jbio.202100044.
Rafeie F, Rezadoust MH, Abdoli R, 2018. New molecular diagnosis for pebrine inspection in silkworm eggs using a real-time PCR probe, Gene Reports 12: 47-49. DOI: 10.1016/j.genrep.2018.06.003.
Rahul K, Manjunatha GR, Sivaprasad V. 2021. Pebrine monitoring methods in sericulture. In: Gurtler V, Subrahmanyam G(Eds), Methods in Microbiology. Academic Press 49: 79-96. DOI: 10.1016/bs.mim.2021.04.003.
Rasool S, Suhaf KA, Ganie NA, Mir MR, Bhat SA, Gul S, Maqbool S, Murtaza I. 2022. Impact of microsporidian infection on economic characteristics of various bivoltine breeds of silkworm Bombyx mori. The Pharma Innovation Journal 11 (9): 591-597.
Razak K. 2017. Strategi Pengembangan Persuteraan Alam di Kabupaten Soppeng. Presented in the Coordination Meeting Persuteraan Alam Wilayah II in 10 May 2017, Makassar. [Indonesia].
Shapiro-Ilan DI, Fuxa JR, L Lacey LA, Onstad DW, Kaya HK. 2005. Defenitions of pathogenicity and virulence in invertebrate pathology. Journal of Invertebrate Pathology 88: 1–7. DOI: 10.1016/j.jip.2004.01.006.
Shapiro-Ilan DI, Bruck DJ, Lacey LA. 2012. Principles of epizootiology and microbial control. In: Vega FE, Kaya HK (Eds.) Insect Pathology, Academic Press 29–72. DOI:10.1016/b978-0-12-384984-7.00003-8.
Sharma SD, Balavenkatasubbaiah M, Babu AM, Kumar SN, Bindroo BB. 2014. Impact of a new microsporidian infection on larval and cocoon parameters of the silkworm, Bombyx mori L. Int. J. Plant Anim. Environ. Sci. 4 (1): 82-87.
Solter LF. 2014. Epizootiology of Microsporidiosis in Invertebrate Hosts. In: Weiss LM, Becnel JJ (Eds.) Microsporidia Pathogens of Opportunity. John Wiley & Sons, Inc. 709p. DOI: 10.1002/9781118395264.ch4.
Suraporn K, Terenius O. 2021. Supplementation of Lactobacillus casei reduces the mortality of Bombyx mori larvae challenged by Nosema bombycis. BMC Res Notes 14 (1): 398. DOI: 10.1186/s13104-021-05807-1.
Tang X, Zhang Y, Zhou Y, Liu R, Shen Z. 2020. Quantitative proteomic analysis of ovaries from Nosema bombycis infected silkworm (Bombyx mori), Journal of Invertebrate Pathology 172: 1-7. DOI: 10.1016/j.jip.2020.107355.
Thomas R, Elkinton JS. 2004. Pathogenicity and virulence. J. Invertebr. Pathol 85: 146–151. DOI: 10.1016/j.jip.2004.01.006.
Vavra J, Larsson JIR. 2014. Structure of Microsporidia. In: Weiss LM, Becnel JJ (Eds.). Microsporidia: Pathogens of Opportunity John Wiley & Sons, Inc. pp.1-70. DOI: 10.1002/9781118395264.ch1.
Yaman M, Bekircan C, Radek R, Linde A. 2014. Nosema pieriae sp. n. (Microsporida, Nosematidae): A new microsporidian pathogen of the cabbage butterfly Pieris brassicae L. (Lepidoptera: Pieridae). Acta Protozool 53: 223–232. DOI:10.4467/16890027AP.14.019.1600.
Zheng S, Huang Y, Chen J, Wei J, Pan G, Li C, Zhou Z. 2020. A specific molecular label for identifying mature Nosema bombycis spores, Journal of Invertebrate Pathology 170: 1-6. DOI: 10.1016/j.jip.2019.107322.