Ecological conditions of growth and breeding analysis of Viburnum opulus L. populations in the Kazakhstan part of the Altai Mountains

##plugins.themes.bootstrap3.article.main##

ALEVTINA N. DANILOVA
TATIANA A. VDOVINA
ELENA A. ISAKOVA
YURI A. KOTUKHOV
AIDAR A. SUMBEMBAYEV

Abstract

Abstract. Danilova AN, Vdovina TA, Isakova EA, Kotukhov YA, Sumbembayev AA. 2024. Ecological conditions of growth and breeding analysis of Viburnum opulus L. populations in the Kazakhstan part of the Altai Mountains. Biodiversitas 25: 2845-2857. The purpose of this paper was to study the ecological growth conditions of Viburnum opulus populations and the variability of the main morphological parameters of the vegetative and generative spheres of the species at the interpopulation level in the Kazakhstan part of the Altai Mountains as a future promising donor for breeding work. As a result of field research, using route-reconnaissance, traditional geobotanical, and morphometric methods, 24 isolated locations of V. opulus were discovered in the Kazakhstan Altai in the geographical areas of Kalbinsky, Western, and Southern Altai. These areas' ecological conditions of the species growth were studied for the first time, based on which the characteristics of plant communities with the participation of V. opulus were compiled. It was found that the species grows mainly in three types of associations: tree-shrub, shrub-meadow in the forest zone, and steppe shrub-meadow in the mountain-steppe zone. Plant communities with the participation of V. opulus occupy areas on the northwestern and southeastern mountain slopes associated with river valleys. The vertical range of distribution of the species varies from 395 to 913 masl. The total area of the territory occupied by plant communities with the participation of V. opulus was 198.85 ha. Furthermore, when studying interpopulation variability in 9 populations isolated from each other and located in different ecological and geographical growing conditions, 3 main groups of characteristics were identified depending on the degree of variability. High variability was revealed in the height of the shrubs, fruits in the cluster and their weight, the color of ripe berries, taste indicators for fruit bitterness from 1 to 4 points, and yield. Promising populations regarding productivity were identified in Kalbinsky, Western, and Southern Altai, depending on the ecological and geographical growth in the Kazakhstan Altai.

##plugins.themes.bootstrap3.article.details##

References
Akbulut M, Calisir S. Marakoglu T, Coklar H. 2008. Chemical and technological properties of European cranberrybush (Viburnum opulus L.) fruits. Asian Journal of Chemistry, 20(3): 1875.
Artaev ON, Bashmakov DI, Bezina OV, Bolshakov SYu. 2014. Methods of field ecological research. – 412 p.
Baitulin IO, Kotukhov YuA. 2011. Flora of vascular plants of Kazakhstan Altai. – 160 p.
Capar, T. D., Dedebas, T., Yalcin, H., & Ekici, L. (2021). Extraction method affects seed oil yield, composition, and antioxidant properties of European cranberrybush (Viburnum opulus). Industrial Crops and Products, 168, 113632. DOI: 10.1016/j.indcrop.2021.113632
Danilova A, Sumbembayev A. 2021. The status of the Dactylorhiza incarnata populations in the Kalbinsky Altai, Kazakhstan. Biodiversitas. 22(8): 3180-3195 DOI: 10.13057/biodiv/d220812
Dienait? L, Baranauskien? R, Venskutonis PR. 2021. Lipophilic extracts isolated from European cranberry bush (Viburnum opulus) and sea buckthorn (Hippophae rhamnoides) berry pomace by supercritical CO2–Promising bioactive ingredients for foods and nutraceuticals. Food Chemistry, 348: 129047. DOI: 10.1016/j.foodchem.2021.129047
Dönmez A, Kadakal Ç. 2024. Hot-air drying and degradation kinetics of bioactive compounds of gilaburu (Viburnum opulus L.) fruit. Chemical Industry & Chemical Engineering Quarterly, 30(1): 59-72. DOI: 10.2298/CICEQ220614011D
Egorina AV, Zinchenko YuK, Zinchenko ES. 2002. Physical geography of Eastern Kazakhstan. Western and Eastern subregions. Alfa-PRESS. – 182 p.
Egorova RV, Muzalevskaya LA. 1978. Landscapes of Rudny Altai. Natural conditions and natural resources of Eastern Kazakhstan. Alma-Ata. – P. 68–82.
Ersoy N, Ercisli S, Akin M, Gundogdu M, Colak AM, Ben Ayed R. 2018. Agro-morphological and biochemical characteristics of European cranberrybush (Viburnum opulus L.). Compt. Rend. Acad. Bulg. Sci, 71(4): 491-499. DOI: 10.7546/CRABS.2018.04.07. – P.491-499.
Ersoy N, Ercisli S, Gundogdu M. 2017. Evaluation of European Cranberrybush (Viburnum opulus L.) genotypes for agro-morphological, biochemical and bioactive characteristics in Turkey. Folia Horticulturae, 29(2): 181-188. DOI: 10.1515/fhort-2017-0017.
Flora of Kazakhstan 1965. Vol ?. – 446 p.
Garcia-Amezquita LE, Tejada-Ortigoza V, Heredia-Olea E, Serna-Saldívar SO, Welti-Chanes J. 2018 Differences in the dietary fiber content of fruits and their by-products quantified by conventional and integrated AOAC official methodologies. J Food Compos Anal. 67: 77–85. DOI: 10.1016/j.jfca.2018.01.004.
Geldiyeva GV, Egorova RV. 1978. Landscapes of Southern Altai. Natural conditions and natural resources of Eastern Kazakhstan. – P. 82-89.
Go?awska S, ?ukasik I, Chojnacki AA, Chrzanowski G. 2023. Flavonoids and phenolic acids content in cultivation and wild collection of European cranberry bush Viburnum opulus L. Molecules, 28(5), 2285. DOI: 103390/molecules28052285.
Gülada BÖ, Cam ME, Yüksel M, Akak?n D, Ta?k?n T, Emre G, Karakoyun B. 2024. Gilaburu (Viburnum opulus L.) fruit extract has potential therapeutic and prophylactic role in a rat model of acetic acid-induced oxidant colonic damage. Journal of Ethnopharmacology, 322: 117624. DOI: 10.1016/j.jep.2023.117624
Iroshnikov AI, Mamaev SA, Pravdin LF, Shcherbakova MA. 1973. Methodology for studying intraspecific variability of tree species. – 31 p.
Konarska A, & Domaciuk M. 2018. Differences in the fruit structure and the location and content of bioactive substances in Viburnum opulus and Viburnum lantana fruits. Protoplasma, 255: 25-41. DOI: 10.1007/s00709-017-1130-z.
Kotukhov YA, Danilova AN, Anufriyeva OA, Suleimenov AN, Sumbembayev AA, Kubentaev SA. 2018. Ecological and biological features of Cypripedium at Katon-Karagay State National Natural Park. Plant Archives 18 (2): 1499-1502.
Kotukhov YuA, Danilova AN, Anufrieva OA. 2020. Summary of wheatgrass (Elytrigia Desv., Agropyron Gaertn.) of the Kazakhstan Altai. Botanical studies of Siberia and Kazakhstan 26: 8-20.
Kraujalyt? V, Venskutonis PR, Pukalskas A, ?esonien? L, Daubaras R. 2013. Antioxidant properties and polyphenolic compositions of fruits from different European cranberrybush (Viburnum opulus L.) genotypes. Food chemistry, 141(4): 3695-3702. DOI: 10.1016/j.foodchem.2013.06.054.
MacAdam DL. 1974. Uniform color scales. J Opt Soc Am 64(12): 1691–1702. DOI: 10.1364/JOSA.64.001691.
Moskalets V, Moskalets T, Barat Y, Ovezmyradova O, Nevmerzhitska O. 2020. Evaluation of new selection forms of Guelder rose (Viburnum opulus L.) on ecological and economically valuable traits. Scientific Horizons, 8(93): 125-132.
Muratova S, Papikhin R, Subbotina N, Melekhov I. 2021. Regulation of rhizogenetic process at clonal micropropagation of horticultural crops. Acta Horticulturae. Vol. 1324: 117-122. DOI: 10.17660/Acta Hortic.2021.1324.18.
Ozan G, Cumbul A, Sumer E, Aydin A, Ekinci FY. 2023. Safety assessment of European cranberrybush (Viburnum opulus L.) fruit juice: Acute and subacute oral toxicity. Food and Chemical Toxicology, 181, 114082.
Ozrenk K, Ilhan G, Sagbas HI, Karatas N, Ercisli S, Colak AM. 2020. Characterization of European cranberrybush (Viburnum opulus L.) genetic resources in Turkey. Scientia Holticulturae. Volume 273, 109611 DOI: 10.1016/j.scienta.2020.109611.
Pastell H, Putkonen T, Rita H. 2019. Dietary fibre in legumes, seeds, vegetables, fruits and mushrooms: comparing traditional and semi-automated filtration techniques. J Food Compos Anal. 75: 1–7. DOI: 10.1016/j.jfca.2018.09.011.
POWO. 2023. Plants of the World Online. Facilitated by the Royal Botanic Gardens, Kew. https://powo.science.kew.org/.
Segelbacher G, Bosse M, Burger P. 2022. New developments in the field of genomic technologies and their relevance to conservation management. Conserv Genet 23: 217–242. DOI: 10.1007/s10592-021-01415-5.
Sevindik O, Guclu G, Agirman B, Selli S, Kadiroglu P, Bordiga M, Kelebek H. 2022. Impacts of selected lactic acid bacteria strains on the aroma and bioactive compositions of fermented gilaburu (Viburnum opulus) juices. Food Chemistry, 378: 132079. DOI: 10.1016/j. foodchem.2022/132079.
Skrypnik LN, Kislyakova LA, Maslennikov PV, Feduraev PV. 2021. Accumulation of phenolic antioxidants in flowers and fruits of guelder rose (Viburnum opulus L.) depending on site conditions. IOP conference series: earth and environmental science. Vol. 677(4): 042042. DOI: 10.1088/1755-1315/677/4/042042.
Sokolov AA. 1974. About the relief of Eastern Kazakhstan. Soils, fertilizers and crops in the conditions of Eastern Kazakhstan. – Vol. 3 – P. 5–57.
Sumbembayev A, Tergenbaeva Z, Kudabayeva G, Tashmetova R, Genievskaya Y, Szlachetko D. 2022. Assessment of state of Dactylorhiza fuchsii(Orchidaceae) populations from the Altai mountains of Kazakhstan. Biodiversitas 23(9): 4385-4399. DOI: 10.13057/biodiv/d230903.
Vdovina TA, Lagus OA. 2023. To the methodology for the study of intraspecific variability and selection of wild forms of Viburnum opulus L. Bulletin of KarSU, Series Biology. Medicine. Geography. 4 (112): 138-145. DOI: 10.31489/2023BMG4/138–145.
Wójcik-Bojek U, Rywaniak J, Bernat P, Pods?dek A, Kajszczak D, Sadowska B. 2021. An in vitro study of the effect of Viburnum opulus extracts on key processes in the development of Staphylococcal infections.Molecules, 26(6): 1758. DOI: 103390/molecules 26061750.
Wu Z, & Zhang X. 2019. Simultaneous determination of isoquercetin and hyperoside in Hawthorn by HPLC. Jilin J. Tradit. Chin. Med, 39: 949-952.
Yaman M. 2022. Determination of genetic diversity in european cranberrybush (Viburnum opulus L.) genotypes based on morphological, phytochemical and ISSR markers. Genetic Resources and Crop Evolution, 69(5): 1889-1899. DOI: 10.1007/s10722-022-01351-4.
Zak?os-Szyda M, Kowalska-Baron A, Pietrzyk N, Drzazga A, Pods?dek A. 2020. Evaluation of Viburnum opulus L. fruit phenolics cytoprotective potential on insulinoma MIN6 cells relevant for diabetes mellitus and obesity. Antioxidants, 9(5): 433. DOI: 10.3390/antiox 9050433.
Zak?os-Szyda M, Pawlik N, Polka D, Nowak A, Kozio?kiewicz M, Pods?dek A. 2019. Viburnum opulus fruit phenolic compounds as cytoprotective agents able to decrease free fatty acids and glucose uptake by Caco-2 cells. Antioxidants, 8(8): 262. DOI: 10.3390/antiox8080262.
Zarifikhosroshahi M, Murathan ZT, Kafkas E, Okatan V. 2020. Variation in volatile and fatty acid contents among Viburnum opulus L. fruits growing different locations. Scientia Horticulturae, 264: 109160. https://doi.org/10.1016/j.scienta.2019.109160.