Diversity and functional annotation of bacteria community associated with the epithelial surface of Hippocampus kuda (yellow seahorse) and its surrounding environment

##plugins.themes.bootstrap3.article.main##

NOEL JOHN IAN FEBEN S. MAGUATE
https://orcid.org/0009-0006-6726-8791
SHARON ROSE M. TABUGO
https://orcid.org/0000-0001-6813-840X

Abstract

Abstract. Maguate NJIFS, Tabugo SRM. 2024. Diversity and functional annotation of bacteria community associated with the epithelial surface of Hippocampus kuda (yellow seahorse) and its surrounding environment. Biodiversitas 25: 2230-2240. Hippocampus kuda, commonly known as the yellow seahorse, hosts various microorganisms crucial for its well-being and interactions within its ecosystem. This research aimed to analyze and understand the bacterial community associated with H. kuda by employing V3-V4 16S rRNA gene amplicon sequencing on the Illumina MiSeq platform. Four distinct libraries were constructed, representing the epithelial surfaces of both male and female seahorses and samples from water and soil/sediment habitats. Following rigorous quality control and processing, 187,972 Amplicon Sequence Variants (ASVs) were identified. The predominant ASVs were attributed to genera such as Vibrio, Roseobacter, Photobacterium, Ruegeria, Candidatus, Pseudoalteromonas, Synechococcus, Flavobacterium, and Altererythrobacter, along with some unidentified genera belonging to the Proteobacteria phylum. As indicated by the Shannon index, alpha diversity analysis demonstrated the highest bacterial diversity on the epithelial surface of male seahorses (MS), with a value of 3.2363. Moreover, the functional annotation of bacterial community was conducted using the PICRUSt algorithm within the Parallel-Meta Suite (PMS) software. This analysis uncovered various functional categories, such as metabolism, genetic information processing, and cellular processing. Overall, the findings underscore the role of the microbiome on the skin and surrounding environment in influencing the growth and health of H. kuda seahorses. Notably, this study represents the first documentation of the bacterial community inhabiting the epithelial surface of H. kuda, shedding light on its significance in the ecology of these marine organisms.

##plugins.themes.bootstrap3.article.details##

References
Alsaffar Z, Pearman JK, Cúrdia J, et al. 2020. The role of seagrass vegetation and local environmental conditions in shaping benthic bacterial and macroinvertebrate communities in a tropical coastal lagoon. Sci Rep 10:13550. DOI: 10.1038/s41598-020-70318-1
Apale CM, Foster A. 2016. The life history and ecology of seahorses in the Philippines. Draft Report in support of eventual CITES implementation for seahorses in the Philippines.
Atencio LA, Dal Grande F, Young GO, et al. 2018. Antimicrobial?producing Pseudoalteromonas from the marine environment of Panama shows a high phylogenetic diversity and clonal structure. Journal of basic microbiology, 58(9), 747-769. DOI: 10.1002/jobm.201800087
Baker-Austin C, Oliver JD, Alam M, et al. 2018. Vibrio spp. infections. Nature Reviews Disease Primers, 4(1), 1-19. DOI: 10.1038/s41572-018-0005-8
Balcázar JL, Pintado J, Planas M. 2010. Vibrio hippocampi sp. nov., a new species isolated from wild seahorses (Hippocampus guttulatus). FEMS microbiology letters, 307(1), 30-34. DOI: 10.1111/j.1574-6968.2010.01955.x
Bereiter-Hahn J, Richards KS, Elsner L, Voth M. 1980. Composition and formation of flame cell caps: A substratum for the attachment of micro-organisms to sea horse epidermis. Proceedings of the Royal Society of Edinburgh, Section B: Biological Sciences, 79(1-3), 105-112. DOI: 10.1017/S0269727000010356
Bergé JP, Barnathan G. 2005. Fatty acids from lipids of marine organisms: molecular biodiversity, roles as biomarkers, biologically active compounds, and economical aspects. Marine biotechnology I, 49-125.
Binh DT, Quyen VHQ, Sang TQ, Oanh TT. 2016. Vibriosis in cultured seahorse (Hippocampus spp.) in khanh hoa province, Vietnam. International Journal of Innovative Studies in Aquatic Biology and Fisheries (IJISABF), 2, 43-50. DOI: 10.1099/00207713-52-3-1049
Borja A, White MP, Berdalet E, et al. 2020. Moving toward an agenda on ocean health and human health in Europe. Frontiers in Marine Science, 7, 37. DOI: 10.3389/fmars.2020.00037
Bridges AA, Prentice JA, Wingreen NS, Bassler BL. 2022. Signal transduction network principles underlying bacterial collective behaviors. Annual review of microbiology, 76, 235-257. DOI: 10.1146/annurev-micro-042922-122020
Bunse C, Lundin D, Karlsson CMG, et al. 2016. Response of marine bacterioplankton pH homeostasis gene expression to elevated CO2. Nat. Clim. Change 6, 483-487. DOI: 10.1038/nclimate2914
Chen Y, Li J, Zhang Y, et al. 2022. Parallel?Meta Suite: Interactive and rapid microbiome data analysis on multiple platforms. IMeta, 1(1), e1. DOI: 10.1002/imt2.1
Chong RSM. 2022. Flavobacteriosis. In Aquaculture Pathophysiology (pp. 367-377). Academic Press. DOI: 10.1016/B978-0-12-812211-2.00028-7
Clausznitzer D, Micali G, Neumann S, Sourjik V, Endres RG. 2014. Predicting chemical environments of bacteria from receptor signaling. PLoS Computational Biology, 10(10), e1003870. DOI: 10.1371/journal.pcbi.1003870
Coates M, Lee MJ, Norton D, MacLeod AS. 2019. The skin and intestinal microbiota and their specific innate immune systems. Frontiers in immunology, 2950. DOI: 10.3389/fimmu.2019.02950
Costantini MS, Medeiros MC, Crampton LH, Reed FA. 2021. Wild gut microbiomes reveal individuals, species, and location as drivers of variation in two critically endangered Hawaiian honeycreepers. PeerJ, 9, e12291. DOI: 10.7717/peerj.12291
Cooper GM, Hausman RE. 2000. A molecular approach. The Cell. 2nd ed. Sunderland, MA: Sinauer Associates.
Curtis J, Moreau MA, Marsden D, Bell E, Martin-Smith K, Samoilys M, Vincent A. 2004. Underwater visual census for seahorse population assessments. Project Seahorse, University of British Columbia, Vancouver.
Dahal RH, Kim J. 2018. Altererythrobacter fulvus sp. nov., a novel alkalitolerant alphaproteobacterium isolated from forest soil. International journal of systematic and evolutionary microbiology, 68(5), 1502-1508. DOI: 10.1099/ijsem.0.002697
Dechavez R, Calub ML, Genobata DR, Balacuit R, Jose R, Tabugo SR. 2022. Identification of culture-dependent microbes from mangroves reveals dominance of Bacillus including medically important species based on DNA signature. Biodiversitas Journal of Biological Diversity, 23(10). DOI: 10.13057/biodiv/d231044
Dvo?ák P, Hindák F, Hašler P, Hindakova A, Poulí?ková A. 2014. Morphological and molecular studies of Neosynechococcus sphagnicola, gen. et sp. nov.(Cyanobacteria, Synechococcales). Phytotaxa, 170(1), 24-34. DOI: 10.11646/phytotaxa.170.1.3
Epstein HE, Smith HA, Torda G, van Oppen MJ. 2019. Microbiome engineering: enhancing climate resilience in corals. Frontiers in Ecology and the Environment 17:100–108. DOI: 10.1002/fee.2001 33.
Fleming LE, Maycock B, White MP, Depledge MH. 2019. Fostering human health through ocean sustainability in the 21st century. People Nat. 1 (3), 276–283. DOI: 10.1002/pan3.10038
Fidalgo C, Rocha J, Martins R, et al. 2017. Altererythrobacter halimionae sp. nov. and Altererythrobacter endophyticus sp. nov., two endophytes from the salt marsh plant Halimione portulacoides. International journal of systematic and evolutionary microbiology, 67(8), 3057-3062. DOI: 10.1099/ijsem.0.002079
Fukuyama Y, Inoue M, Omae K, Yoshida T, Sako Y. 2020. Anaerobic and hydrogenogenic carbon monoxide-oxidizing prokaryotes: Versatile microbial conversion of a toxic gas into an available energy. Advances in Applied Microbiology, 110, 99-148. DOI: 10.1016/bs.aambs.2019.12.001
Furuyama N, Sircili MP. 2021. Outer membrane vesicles (OMVs) produced by gram-negative bacteria: structure, functions, biogenesis, and vaccine application. BioMed Research International. DOI: 10.1155/2021/1490732
Glencross BD. 2009. Exploring the nutritional demand for essential fatty acids by aquaculture species. Reviews in Aquaculture, 1(2), 71-124. DOI: 10.1111/j.1753-5131.2009.01006.x
Gómez GD, Balcázar JL. 2008. A review on the interactions between gut microbiota and innate immunity of fish. FEMS Immunology & Medical Microbiology, 52(2), 145-154. DOI: 10.1111/j.1574-695X.2007.00343.x
Goncheva MI, Chin D, Heinrichs DE. 2022. Nucleotide biosynthesis: the base of bacterial pathogenesis. Trends in Microbiology, 30(8), 793-804. DOI: 10.1016/j.tim.2021.12.007
Hacquard S, Garrido-Oter R, González A, et al. 2015. Microbiota and host nutrition across plant and animal kingdoms. Cell host & microbe, 17(5), 603-616. DOI: 10.1016/j.chom.2015.04.009
Haggerty JM, Dinsdale EA. 2017. Distinct biogeographical patterns of marine bacterial taxonomy and functional genes. Global Ecol. Biogeogr. 26, 177–190. DOI: 10.1111/geb.12528
Henson MW, Thrash C. 2023. Microbial ecology of coastal northern Gulf of Mexico waters. bioRxiv. DOI: 10.1101/2023.11.17.567634
Hilgarth M, Fuertes?Pèrez S, Ehrmann M, Vogel RF 2018. An adapted isolation procedure reveals Photobacterium spp. as common spoilers on modified atmosphere packaged meats. Letters in applied microbiology, 66(4), 262-267. DOI: 10.1111/lam.12860
Hou F, Wen L, Peng C, Guo J. 2018. Identification of marine traditional Chinese medicine dried seahorses in the traditional Chinese medicine market using DNA barcoding. Mitochondrial DNA Part A, 29(1), 107-112. DOI: 10.1080/24701394.2016.1248430
Hsu DK, Fung MA, Chen HL. 2020. Role of skin and gut microbiota in the pathogenesis of psoriasis, an inflammatory skin disease. Medicine in Microecology, 4, 100016. DOI: 10.1016/j.medmic.2020.100016
Hua D, Hendriks WH, Xiong B, Pellikaan WF. 2022. Starch and cellulose degradation in the rumen and applications of metagenomics on ruminal microorganisms. Animals, 12(21), 3020. DOI: 10.3390/ani12213020
Ininbergs K, Bergman B, Larsson J, Ekman M. 2015. Microbial metagenomics in the Baltic Sea: Recent advancements and prospects for environmental monitoring. Ambio 44 Suppl 3, 439-450. DOI: 10.1007/s13280-015-0663-7
Ivanova EP, Ng HJ, Webb HK. 2014. The family pseudoalteromonadaceae. The prokaryotes, 575-582. DOI: 10.1007/978-3-642-38922-1_229
Jeckelmann JM, Erni B. 2020. Transporters of glucose and other carbohydrates in bacteria. Pflügers Archiv-European Journal of Physiology, 472, 1129-1153. DOI: 10.1007/s00424-020-02379-0
Jiang F, Huang H, Yang N, Feng H, Li Y, Han B. 2020. Isolation, identification, and biological control in vitro of tail rot pathogen strain from Hippocampus kuda. Plos one, 15(4), e0232162. DOI: 10.1371/journal.pone.0232162
Jung K, Fabiani F, Hoyer E, Lassak J. 2018. Bacterial transmembrane signalling systems and their engineering for biosensing. Open biology, 8(4), 180023. DOI: 10.1098/rsob.180023
Kämpfer P, Arun AB, Rekha PD, Busse HJ, Young CC, Glaeser SP. 2013. Ruegeria intermedia sp. nov., a moderately thermophilic bacterium isolated from a coastal hot spring. International journal of systematic and evolutionary microbiology, 63(Pt_7), 2538-2544. DOI: 10.1099/ijs.0.047910-0
Kang JW, Kim MS, Lee JH, Baik KS, Seong CN. 2016. Altererythrobacter rigui sp. nov., isolated from wetland freshwater. International Journal of Systematic and Evolutionary Microbiology, 66(7), 2491-2496. DOI: 10.1099/ijsem.0.001078
Ko J, Wan Q, Bathige SDNK, Lee J. 2016. Molecular characterization, transcriptional profiling, and antibacterial potential of G-type lysozyme from seahorse (Hippocampus abdominalis). Fish & Shellfish Immunology, 58, 622-630. DOI: 10.1016/j.fsi.2016.10.014
Koldewey HJ, Martin-Smith KM. 2010. A global review of seahorse aquaculture. Aquaculture, 302(3-4), 131-152. DOI: 10.1016/j.aquaculture.2009.11.010
Komárek J, Johansen JR, Šmarda J, Strunecký O. 2020. Phylogeny and taxonomy of Synechococcus-like cyanobacteria. Fottea, 20(2), 171-191. DOI: 10.5507/fot.2020.006
Kontomina E, Garefalaki V, Fylaktakidou KC, et al. (2022). A taxonomically representative strain collection to explore xenobiotic and secondary metabolism in bacteria. PLoS One, 17(7), e0271125. DOI: 10.1371/journal.pone.0271125
Koropatkin NM, Cameron EA, Martens EC. 2012. How glycan metabolism shapes the human gut microbiota. Nature Reviews Microbiology, 10(5), 323-335. DOI: 10.1038/nrmicro2746
Kuiter RH. 2003. A new pygmy seahorse (Pisces: Syngnathidae: Hippocampus) from Lord Howe Island. RECORDS-AUSTRALIAN MUSEUM, 55(2), 113-116.
Kulp A, Kuehn MJ. 2010. Biological functions and biogenesis of secreted bacterial outer membrane vesicles. Annual review of microbiology, 64, 163-184. DOI: 10.1146/annurev.micro.091208.073413
Labella AM, Arahal DR, Castro D, Lemos ML, Borrego JJ. 2017. Revisiting the genus Photobacterium: taxonomy, ecology and pathogenesis. Int Microbiol, 20(1), 1-10. DOI: 10.2436/20.1501.01.280
LaFrentz BR, Waldbieser GC, Welch TJ, Shoemaker CA. 2014. Intragenomic heterogeneity in the 16 S r RNA genes of F lavobacterium columnare and standard protocol for genomovar assignment. Journal of Fish Diseases, 37(7), 657-669. DOI: 10.1111/jfd.12166
Li F, Wang K, Luo W, Huang L, Lin Q. 2015. Comparison of the intestinal bacterial flora in healthy and intestinal?diseased seahorses Hippocampus trimaculatus, Hippocampus erectus, and Hippocampus spinosissimus. Journal of the World Aquaculture Society, 46(3), 263-272. DOI: 10.1111/jwas.12189
Li L, Sun W, Wang P, Li H, Rehman S, Li D, Zhuge Q. 2022. Characterization, expression, and functional analysis of the pathogenesis-related gene PtDIR11 in transgenic poplar. International Journal of Biological Macromolecules, 210, 182-195. DOI: 10.1016/j.ijbiomac.2022.05.012
Li Y, Zhou M, Wang F, et al. 2017. Photobacterium proteolyticum sp. nov., a protease-producing bacterium isolated from ocean sediments of Laizhou Bay. International Journal of Systematic and Evolutionary Microbiology, 67(6), 1835-1840. DOI: 10.1099/ijsem.0.001873
Liu J, Zheng Y, Lin H, et al. 2019 Proliferation of hydrocarbon-degrading microbes at the bottom of the Mariana Trench. Microbiome 7:47. DOI: 10.1186/s40168-019-0652-3
Liu G, Qiao Y, Zhang Y, et al. 2020. Metabolic profiles of carbohydrates in Streptococcus thermophilus during pH-controlled batch fermentation. Frontiers in Microbiology, 11, 1131. DOI: 10.3389/fmicb.2020.01131
Lo N, Jin HM, Jeon CO. 2014. Photobacterium aestuarii sp. nov., a marine bacterium isolated from a tidal flat. International journal of systematic and evolutionary microbiology, 64(Pt_2), 625-630. DOI: 10.1099/ijs.0.056861-0
Lopatkin AJ, Yang JH. 2021. Digital insights into nucleotide metabolism and antibiotic treatment failure. Frontiers in digital health, 3, 583468. DOI: 10.3389/fdgth.2021.583468
López-Pérez M, Haro-Moreno JM, Iranzo J, Rodriguez-Valera F. 2020. Genomes of the “Candidatus Actinomarinales” order: highly streamlined marine epipelagic Actinobacteria. Msystems, 5(6), 10-1128. DOI: 10.1128/msystems.01041-20
Lourie SA, Foster SJ, Cooper EW, Vincent AC. (2004). A guide to the identification of seahorses. Project Seahorse and TRAFFIC North America, 114(1), 1-120.
Magaña G, Harvey C, Taggart CC, Rodgers AM. 2023. Bacterial Outer Membrane Vesicles: Role in Pathogenesis and Host-Cell Interactions. Antibiotics, 13(1), 32. DOI: 10.3390/antibiotics13010032
Mago? T, Salzbrg SL. (2011). FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27(21):2957-2963. DOI:10.1093/bioinformatics/btr507.
Mahmud MR, Akter S, Tamanna SK, et al. (2022). Impact of gut microbiome on skin health: Gut-skin axis observed through the lenses of therapeutics and skin diseases. Gut Microbes, 14(1), 2096995. DOI: 10.1080/19490976.2022.2096995
Marchioro GM, Glasl B, Engelen AH, et al (2020) Microbiome dynamics in the tissue and mucus of acroporid corals differ in relation to host and environmental parameters. PeerJ 8:e9644. DOI: 10.7717/peerj.9644 31.
Mitrophanov AY, Groisman EA. 2008. Signal integration in bacterial two-component regulatory systems. Genes & development, 22(19), 2601. DOI: 10.1101/gad.1700308
Mohanty B, Mahanty A, Ganguly S, et al. (2014). Amino acid compositions of 27 food fishes and their importance in clinical nutrition. Journal of amino acids. DOI: 10.1155/2014/269797
Muwawa EM, Obieze CC, Makonde HM, Jefwa JM, Kahindi JHP, Khasa DP. 2021. 16S rRNA gene amplicon-based metagenomic analysis of bacterial communities in the rhizospheres of selected mangrove species from Mida Creek and Gazi Bay, Kenya. PLoS ONE 16(3): e0248485. DOI: 10.1371/journal.pone.0248485.
Nurul ANA, Muhammad DD, Okomoda VT, Nur AAB. 2019. 16S rRNA-Based metagenomic analysis of microbial communities associated with wild Labroides dimidiatus from Karah Island, Terengganu, Malaysia. Biotechnology Reports, 21, e00303. DOI: 10.1016/j.btre.2019.e00303
Peña JGR, Kontoyiannis DP. 2020. The gut mycobiome: the overlooked constituent of clinical outcomes and treatment complications in patients with cancer and other immunosuppressive conditions. PLoS pathogens, 16(4), e1008353. DOI: 10.1371/journal.ppat.1008353
Padan E, Bibi E, Ito M, Krulwich TA. 2005. Alkaline pH homeostasis in bacteria: new insights. Biochimica et biophysica acta, 1717(2), 67–88. DOI: 10.1016/j.bbamem.2005.09.010
Parzanini C, Parrish CC, Hamel JF, Mercier A. 2018. Functional diversity and nutritional content in a deep-sea faunal assemblage through total lipid, lipid class, and fatty acid analyses. PLoS One, 13(11), e0207395. DOI: 10.1371/journal.pone.0207395
Passalacqua KD, Charbonneau ME, O'riordan MX. 2016. Bacterial metabolism shapes the host–pathogen interface. Virulence Mechanisms of Bacterial Pathogens, 15-41. DOI: 10.1128/9781555819286.ch2
Patti JM, Allen BL, McGavin MJ, Höök M. 1994. MSCRAMM-mediated adherence of microorganisms to host tissues. Annual Reviews in Microbiology, 48(1), 585-617. DOI: 10.1146/annurev.mi.48.100194.003101
Perez SF, Hauschild P, Hilgarth M, Vogel RF. 2019. Biodiversity of Photobacterium spp. isolated from meats. Frontiers in Microbiology, 10, 2399. DOI: 10.3389/fmicb.2019.02399
Puccio T, Misra BB, Kitten T. 2021. Time-course analysis of Streptococcus sanguinis after manganese depletion reveals changes in glycolytic and nucleic acid metabolites. Metabolomics, 17(5), 44. DOI: 10.1007/s11306-021-01795-2
Pujalte MJ, Lucena T, Ruvira MA, Arahal DR, Macián MC. 2014. The family rhodobacteraceae. Springer. DOI: 10.1007/978-3-642-30197-1_377
Qi X, Yun C, Pang Y, Qiao J. 2021. The impact of the gut microbiota on the reproductive and metabolic endocrine system. Gut Microbes, 13(1), 1894070. DOI: 10.1080/19490976.2021.1894070
Qiao Y, Liu G, Lv X, et al. 2020. Metabolic pathway profiling in intracellular and extracellular environments of Streptococcus thermophilus during pH-controlled batch fermentations. Frontiers in Microbiology, 10, 3144. DOI: 10.3389/fmicb.2019.03144
Raj ST, Lipton AP, Chauhan GS. 2010. Characterization and infectivity evaluation of Vibrio harveyi causing white patch disease among captive reared seahorses, Hippocampus kuda.
Rathore AS, Gupta RD. 2015. Chitinases from bacteria to human: properties, applications, and future perspectives. Enzyme research. DOI: 10.1155/2015/791907
Risely A. 2020. Applying the core microbiome to understand host–microbe systems. Journal of Animal Ecology 89:1549–1558. DOI: 10.1111/1365-2656.13229
Rothschild D, Weissbrod O, Barkan E, et al. 2018. Environment dominates over host genetics in shaping human gut microbiota. Nature, 555(7695), 210-215. DOI: 10.1038/nature25973
Rowland I, Gibson G, Heinken A, Scott K, Swann J, Thiele I, Tuohy K. 2018. Gut microbiota functions: metabolism of nutrients and other food components. European journal of nutrition, 57, 1-24. DOI: 10.1007/s00394-017-1445-8
Roychowdhury R, Roy M, Zaman S, Mitra A. 2018. Marine microbes: A unique group for the benefit of mankind. Journal of Emerging Technologies and Innovative Research, 5(8).
Sampaio A, Silva V, Poeta P, Aonofriesei F. 2022. Vibrio spp.: Life strategies, ecology, and risks in a changing environment. Diversity, 14(2), 97. DOI: 10.3390/d14020097
Sansone CL, Cohen J, Yasunaga A, et al. 2015. Microbiota-dependent priming of antiviral intestinal immunity in Drosophila. Cell host & microbe, 18(5), 571-581. DOI: 10.1016/j.chom.2015.10.010
Seo JH, Kang I, Yang SJ, Cho JC. 2017. Characterization of spatial distribution of the bacterial community in the South Sea of Korea. PLoS One 12:e0174159. DOI: 10.1371/journal.pone.0174159.
Sylvain FÉ, Holland A, Bouslama S, et al. (2020). Fish skin and gut microbiomes show contrasting signatures of host species and habitat. Applied and environmental microbiology, 86(16), e00789-20. DOI: 10.1128/AEM.00789-20
Tendencia EA. 2004. The first report of Vibrio harveyi infection in the sea horse Hippocampus kuda Bleekers 1852 in the Philippines. Aquaculture Research, 35(13), 1292-1294. DOI: 10.1111/j.1365-2109.2004.01109.x
Thyssen A, Ollevier F. 2015. “Photobacterium,” in Bergey’s Manual of Systematics of Archaea and Bacteria, eds Whitman W. B., Rainey F., Kämpfer P., Trujillo M., Chun J., DeVos P., et al. (Hoboken, NJ: Wiley;), 1–11. DOI: 10.1002/9781118960608
Ulloa O, Henriquez-Castillo C, Ramirez-Flandes S, et al. 2021. The cyanobacterium prochlorococcus has divergent light-harvesting antennae and may have evolved in a low-oxygen ocean. Proc. Natl. Acad. Sci. United States America 118 (11). DOI: 10.1073/pnas.2025638118
Varki A. 2017. Biological roles of glycans. Glycobiology, 27(1), 3-49. DOI: 10.1093/glycob/cww086
Vincent ACJ. 1996. The international trade in seahorses. Oxford: TRAFFIC International. Oxford University Press.
Wahl M, Goecke F, Labes A, Dobretsov S, Weinberger F. 2012. The second skin: ecological role of epibiotic biofilms on marine organisms. Frontiers in microbiology, 3, 31139. DOI: 10.3389/fmicb.2012.00292
Wahlström A, Sayin SI, Marschall HU, Bäckhed F. 2016. Intestinal crosstalk between bile acids and microbiota and its impact on host metabolism. Cell metabolism, 24(1), 41-50. DOI: 10.1016/j.cmet.2016.05.005
Wainwright BJ, Zahn GL, Afiq-Rosli L, et al. 2020. Host age is not a consistent predictor of microbial diversity in the coral Porites lutea. Sci Rep 10:14376. DOI: 10.1038/s41598- 020-71117-4
Wang W, Wu Z, Dai Z, Yang Y, Wang J, Wu G. 2013. Glycine metabolism in animals and humans: implications for nutrition and health. Amino acids, 45, 463-477. DOI: 10.1007/s00726-013-1493-1
Wang X, Wang Y, Yang X, Sun H, Li B, Zhang XH. 2017. Photobacterium alginatilyticum sp. nov., a marine bacterium isolated from bottom seawater. International Journal of Systematic and Evolutionary Microbiology, 67(6), 1912-1917. DOI: 10.1099/ijsem.0.001886
Wang R, Pan X, Xu Y. 2020. Altered intestinal microbiota composition associated with enteritis in yellow seahorses Hippocampus kuda (Bleeker, 1852). Current Microbiology, 77, 730-737. DOI: 10.1007/s00284-019-01859-6
Wang X, Zhang R, Liu S, Zhang B, Tang L, Lin Q. 2022. Characterization and expression analysis of key genes of pathogen-associated molecular pattern-triggered Toll-like receptor 5 signaling in the lined seahorse responses to bacterial and parasitic infection. Aquaculture, 549, 737777. DOI: 10.1016/j.aquaculture.2021.737777
Wa?kiewicz A, Irzykowska L. 2014. Flavobacterium spp.–characteristics, occurrence, and toxicity. DOI: 10.1016/B978-0-12-384730-0.00126-9
Williams DA, Pradhan K, Paul A, et al. 2020. Metabolic inhibitors of bacterial glycan biosynthesis. Chemical science, 11(7), 1761-1774. DOI:1 0.1039/C9SC05955E
Wei W, Wang L, Fang J, Liu R. 2021. Population structure, activity potential and ecotype partitioning of Pseudoalteromonas along the vertical water column of the New Britain Trench. FEMS Microbiology Letters, 368(13), fnab078. DOI: 10.1093/femsle/fnab078
Wu G. 2010. Functional amino acids in growth, reproduction, and health. Advances in nutrition, 1(1), 31-37. DOI: 10.3945/an.110.1008
Xue HP, Zhang DF, Xu L, et al. 2021. Actirhodobacter atriluteus gen. nov., sp. nov., isolated from the surface water of the Yellow Sea. Antonie van Leeuwenhoek, 114, 1059-1068. DOI: 10.1007/s10482-021-01576-w
Xue H, Piao CG, Guo MW, Wang LF, Fang W, Li Y. 2016. Description of Altererythrobacter aerius sp. nov., isolated from air, and emended description of the genus Altererythrobacter. International Journal of Systematic and Evolutionary Microbiology, 66(11), 4543-4548. DOI: 10.1099/ijsem.0.001388
Yan ZF, Lin P, Won KH, et al. 2017. Altererythrobacter deserti sp. nov., isolated from desert soil. International Journal of Systematic and Evolutionary Microbiology, 67(10), 3806-3811. DOI: 10.1099/ijsem.0.002197
Yang Y, Zhang G, Sun Z, Cheung MK, Huang C. 2014. Altererythrobacter oceanensis sp. nov., isolated from the Western Pacific. Antonie van Leeuwenhoek, 106, 1191-1198. DOI: 10.1007/s10482-014-0288-z
Yoshii K, Hosomi K, Sawane K, Kunisawa J. 2019. Metabolism of dietary and microbial vitamin B family in the regulation of host immunity. Frontiers in nutrition, 6, 48. DOI: 10.3389/fnut.2019.00048
Yuan CG, Chen X, Jiang Z, et al. 2017. Altererythrobacter lauratis sp. nov. and Altererythrobacter palmitatis sp. nov., isolated from a Tibetan hot spring. Antonie van Leeuwenhoek, 110, 1077-1086. DOI: 10.1007/s10482-017-0882-y
Zhang Y, Qin G, Lin J, Lin Q. 2015. Growth, survivorship, air?bubble disease, and attachment of feeble juvenile seahorses, Hippocampus kuda (Bleeker, 1852). Journal of the World Aquaculture Society, 46(3), 292-300. DOI: 10.1111/jwas.12193
Zhao Y, Han Y, Sun Y, et al. 2021. Comprehensive succinylome profiling reveals the pivotal role of lysine succinylation in energy metabolism and quorum sensing of Staphylococcus epidermidis. Frontiers in Microbiology, 11, 632367. DOI: 10.3389/fmicb.2020.632367
Zhao S, Zhang T, Ma S, Wang M. 2023. Sea-horse optimizer: a novel nature-inspired meta-heuristic for global optimization problems. Applied Intelligence, 53(10), 11833-11860. DOI: 10.1007/s10489-022-03994-3
Zheng K, Dong Y, Liang Y, et al. 2023. Genomic diversity and ecological distribution of marine Pseudoalteromonas phages. Marine life science & technology, 5(2), 271-285. DOI: 10.1007/s42995-022-00160-z
Zheng S, Bawazir M, Dhall A, et al. 2021. Implication of surface properties, bacterial motility, and hydrodynamic conditions on bacterial surface sensing and their initial adhesion. Frontiers in Bioengineering and Biotechnology, 9, 643722. DOI: 10.3389/fbioe.2021.643722
Zeng Z, Guo XP, Li B, et al. 2015. Characterization of self-generated variants in Pseudoalteromonas lipolytica bioflm with increased antifouling activities. Appl Microbiol Biotechnol 99:10127–10139. DOI: 10.1007/s00253-015-6865-x
Zinke LA, Glombitza C, Bird JT, et al. 2019. Microbial organic matter degradation potential in Baltic Sea sediments is influenced by depositional conditions and in situ geochemistry. Applied and Environmental Microbiology, 85(4), e02164-18. DOI: 10.1128/AEM.02164-18
Zolti A, Green SJ, Sela N, Hadar Y, Minz D. 2020. The microbiome as a biosensor: functional profiles elucidate hidden stress in hosts. Microbiome, 8(1), 1-18. DOI: 10.1186/s40168-020-00850-9
Zschiedrich CP, Keidel V, Szurmant H. 2016. Molecular mechanisms of two-component signal transduction. Journal of molecular biology, 428(19), 3752-3775. DOI: 10.1016/j.jmb.2016.08.003.