Amplicon metagenome comparison of Tandag River, Surigao del Sur, Philippines, based on high-throughput parallel DNA sequencing analysis of bacterial communities

##plugins.themes.bootstrap3.article.main##

ROXAN G. EUPEÑA-CARAY
GISELLE B. RAMOS
JOCELYN B. PANDUYOS
LUZMINDA S. BACQUIAL
SHARON ROSE M. TABUGO
https://orcid.org/0000-0001-6813-840X

Abstract

Abstract. Eupeña-Caray RG, Ramos GB, Panduyos JB, Bacquial LS, Tabugo SRM. 2024. Amplicon metagenome comparison of Tandag River, Surigao del Sur, Philippines, based on high-throughput parallel DNA sequencing analysis of bacterial communities. Biodiversitas 25: 3464-3472. Rivers serve as a vital freshwater reservoir for the environment and human consumption. Biomonitoring based on eDNA is essential for aquatic ecosystems. The present study investigates the bacterial taxonomic diversity of this ecosystem using the V1-V3 16S rRNA regions obtained from paired-end Illumina MiSeq reads. A total of nine amplicon libraries (U1, U2, U3, M1, M2, M3, D1, D2, D3) were constructed corresponding to the sites (U-upstream, M-midstream, D-downstream) of the Tandag River. After post-quality control and processing, there were 608,099 amplicon sequence variants (ASVs), representing 1194 families and 2090 genera. Results showed that the most abundant ASVs were affiliated with genera Bacillus, Pseudomonas, Ralstonia, Alcaligenes, and Pseudarcicella, along with unclassified bacteria derived from Gammaproteobacteria, Alphaproteobacteria, Verrucomicrobia subdivision, Flavobacteria, and Pseudomonadaceae. The bacterial alpha diversity was ranked upstream>midstream>downstream. An increase in the abundance of Bacillus (Firmicutes) and Gammaproteobacteria in an urbanized zone indicated a high level of human activity and an important threat to public health. Noteworthy is that the alkaline environment characterized by increased pH levels favors the occurrence of alkaliphilic bacteria. Microbial community structure was influenced by anthropogenic interference and selective pressure from loads of urban discharge in the area. The functional prediction of bacterial communities by Parallel-Meta Suite (PMS) using the PICRUSt algorithm suggests functions related to metabolism and environment information processing. The presence of xenobiotic biodegradation bacteria highlights future possible applications. Findings contribute to understanding microbial communities in response to rapid urbanization. This is the first account of high-throughput sequencing analysis of bacterial communities in an urban river under anthropogenic stress in the Philippines.

##plugins.themes.bootstrap3.article.details##

References
Bai Y, Qi W, Liang J, Qu J. 2014. Using high-throughput sequencing to assess the impacts of treated and untreated wastewater discharge on prokaryotic communities in an urban river. Appl Micro Biotechnol 98: 1841-1851. DOI: 10.1007/s00253-013-5116-2.
Bonfantine KL, Trevathan-Tackett SM, Matthews TG, Neckovic A, Gan HM. 2021. Dumpster diving for diatom plastid 16S rRNA genes. Peer J 9: 11576. DOI: 10.7717/peerj.11576.
Borkar S. 2015. Alkaliphilic bacteria: Diversity, physiology and industrial applications. In: Borkar S (eds). Bioprospects of Coastal Eubacteria: Ecosystems of Goa. Springer, Cham. DOI: 10.1007/978-3-319-12910-5_4.
Chen Y, Li J, Zhang Y, Zhang M, Sun Z, Jing G, Huang S, Su X. 2022. Parallel?Meta Suite: Interactive and rapid microbiome data analysis on multiple platforms. iMeta 1: 1-11.DOI: 10.1002/imt2.1.
Dechavez R, Calub ML, Genobata DR, Balacuit R, Jose R, Tabugo SR. 2022. Identification of culture-dependent microbes from mangroves reveals dominance of Bacillus including medically important species based on DNA signature. Biodiversitas 23 (10): 5342-5350. DOI: 10.13057/biodiv/d231044.
Durand S, Braun F, Lioliou E, Romilly C, Helfer AC, Kuhn L, Quittot N, Nicolas P, Romby P, Condon, C. 2015. A nitric oxide regulated small RNA controls expression of genes involved in redox homeostasis in Bacillus subtilis. PLoS Genet 11: 1004957. DOI: 10.1371/journal.pgen.1004957.
Edward JB, Ugwumba AAA. 2013. Fish fauna of a tropical southern reservoir in Nigerian. Intl J Innov Res Dev 2: 434-444.
Egbueri JC, Agbasi JC, Ayejoto DA, Khan MI, Khan MYA. 2023. Extent of anthropogenic influence on groundwater quality and human health-related risks: An integrated assessment based on selected physicochemical characteristics. Geocarto Intl 38 (1): 2210100. DOI: 10.1890/ES14-00534.1.
Erlacher A, Cardinale M, Grosch R, Grube M, Berg G. 2014. The impact of the pathogen Rhizoctonia solani and its beneficial counterpart Bacillus amyloliquefaciens on the indigenous lettuce microbiome. Front Microbiol 5: 175. DOI: 10.3389/fmicb.2014.00175.
Gan HM, Szegedi E, Fersi R, Chebil S, Kovács L, Kawaguchi A, Hudson AO, Burr TJ, Savka, M. A. 2019. Insight into the microbial co-occurrence and diversity of 73 grapevine (Vitis vinifera) crown galls collected across the northern hemisphere. Front Microbiol 10: 1896. DOI: 10.3389/fmicb.2019.01896.
Ginige MP, Hugenholtz P, Daims H, Wagner M, Keller J, Blackall LL. 2004. Use of stable-isotope probing, full-cycle rRNA analysis, and fluorescence in situ hybridization-microautoradiography to study a methanol-fed denitrifying microbial community. Appl Environ Microbiol 70: 588-596. DOI: 10.1128/AEM.70.1.588-596.2004.
Godheja J, Shekhar SK, Siddiqui SA, Modi DR. 2016. Xenobiotic compounds present in soil and water: A review on remediation strategies. J Environ Anal Toxicol 6: 392. DOI: 10.4172/2161-0525.1000392.
Hahnke RL, Meier-Kolthoff JP, García-López M, Mukherjee S, Huntemann M, Ivanova NN, Woyke T, Kyrpides N, Hans-Peter K, Göker M. 2016. Genome-based taxonomic classification of Bacteroidetes. Front Microbiol 7: 2003. DOI: 10.3389/fmicb.2016.02003.
Hem S, Jarocki VM, Baker DJ, Charles IG, Drigo B, Aucote S, Donner E, Burnard D, Bauer M, Harris P, Wyrsch E, Djordjevic SP. 2022. Genomic analysis of Elizabethkingia species from aquatic environments: Evidence for potential clinical transmission. Curr Res Microbiol Res Sci 3: 100083. DOI: 10.1016/j.crmicr.2021.100083.
Herbert ER, Boon P, Burgin AJ, Neubauer SC, Franklin RB, Ardón M, Hopfensperger KN, Leon PM, Gell P. 2015. A global perspective on wetland salinization: Ecological consequences of a growing threat to freshwater wetlands. Ecosphere 6 (10): 1-43. DOI: 10.1890/ES14-00534.1.
Hu Z, Chen X, Chang J, Yu J, Tong Q, Li S, Niu H. 2018. Compositional and predicted functional analysis of the gut microbiota of Radix auricularia (Linnaeus) via high-throughput Illumina sequencing. Peer J 6: e5537. DOI: 10.7717/peerj.5537/supp-10.
Hugerth LW, Andersson AF. 2017. Analysing microbial community composition through amplicon sequencing: from sampling to hypothesis testing. Front Microbiol 8: 1561. DOI: 10.3389/fmicb.2017.01561.
Jordaan K, Bezuidenhout CC. 2016. Bacterial community composition of an urban river in the North West Province, South Africa, in relation to physico-chemical water quality. Environ Sci Pollut Res 23: 5868-5880. DOI: 10.1007/s11356-015-5786-7.
Khorooshi S, Mostafazadeh R, Esmaliouri R, Raoof M. 2016. River health, importance and applications. Extension Develop Watershed Manag 14 (13): 35-40.
Köchling T, Sanz JL, Galdino L, Florencio L, Kato MT. 2017. Impact of pollution on the microbial diversity of a tropical river in an urbanized region of northeastern Brazil. Intl Microbiol 20 (1): 11-24. DOI: 10.2436/20.1501.01.281.
Kuang B, Xiao R, Wang C, Zhang L, Wei Z, Bai J, Zhang K, Campos M, Jorquera MA. 2022. Bacterial community assembly in surface sediments of a eutrophic shallow lake in northern China. Echohydrol Hydrobiol 1: 1-7. DOI: 10.1016/j.ecohyd.2022.01.005.
Kupiec JM, Staniszewski R, Kayzer D. 2022. Assessment of water quality indicators in the orla river nitrate vulnerable zone in the context of new threats in Poland. Water 14: 2287. DOI: 10.3390/w14152287.
Kusunur AB, Velayudhan LK, Vaiyapuri M, Gaurav R, Tripathi G, Kurcheti PP, Badireddy MR, Joseph TC. 2022. Microbial diversity and composition in acidic sediments of freshwater finfish culture ponds fed with two types of feed: a metagenomic approach. Lett Appl Microbiol 75: 171-181. DOI: 10.1111/lam.13720.
Lang E, Burghartz M, Spring S, Swiderski J, Spröer C. 2010. Pseudomonas benzenivorans sp. nov. and Pseudomonas saponiphila sp. nov., represented by xenobiotics degrading type strains. Curr Microbiol 60: 85-91. DOI: 10.1007/s00284-009-9507-7.
McDonald RI, Weber K, Padowski J, Flörke M, Schneider C, Green PA, Gleeson T, Eckman S, Lehner B, Balk D, Boucher T, Gunther G, Montgomery M. 2014. Water on an urban planet: Urbanization and the reach of urban water infrastructure. Global Environ Chang 27: 96-105. DOI: 10.1016/j.gloenvcha.2014.04.022.
Medeiros JD, Cantão ME, Cesar DE, Nicolás MF, Diniz CG, Silva VL, de Vasconcelos ATR, Coelho CM. 2016. Comparative metagenome of a stream impacted by the urbanization phenomenon. Braz J Microbiol 47: 835-845. DOI: 10.1016/ j.bjm.2016.06.011.
Meyer F, Paarmann D, D'Souza M, Olson R, Glass EM, Kuba, M, Paczian T, Rodriguez A, Stevens R, Wilke A, Wilkening J, Edwards RA. 2008. The metagenomics RAST server-a public resource for the automatic phylogenetic and functional analysis of metagenomes. BMC Bioinformatics 9: 386. DOI: 10.1186/1471-2105-9-386.
Miglani R, Parveen N, Kumar A, Ansari MA, Khanna S, Rawat G, Panda AK, Bisht SS, Upadhyay J, Ansari MN. 2022. Degradation of xenobiotic pollutants: An environmentally sustainable approach. Metabolites 12 (9): 818. DOI: 10.3390/metabo12090818.
Numberger D, Zoccarato L, Woodhouse J, Ganzert L, Sauer S, Márquez JRG, Domisch S, Grossart HP, Greenwood AD. 2022. Urbanization promotes specific bacteria in freshwater microbiomes including potential pathogens. Sci Total Environ 845: 157321. DOI: 10.1016/j.scitotenv.2022.157321.
Onyema IC. 2013. Phytoplankton bio-indicators of water quality situations in the Iyagbe Lagoon, South-Western Nigeria. Res J Pharm Bio Chem Sci 4 (3): 93-107.
Pal Y, Mayilraj S, Krishnamurthi S. 2022. Uncovering the structure and function of specialist bacterial lineages in environments routinely exposed to explosives. Letters Appl Microbiol 75: 1433-1448. DOI: 10.1111/lam.13810.
Purnomo AS, Asranudin A, Prasetyoko D, Azizah YDN. 2021. The biotransformation and biodecolorization of methylene blue by xenobiotic bacterium Ralstonia pickettii. Indones J Chem 21 (6): 1418-1430. DOI: 10.22146/ijc.65806.
Ramond JB, Makhalanyane TP, Tuffin MI, Cowan DA. 2015. Normalization of environmental metagenomic DNA enhances the discovery of under?represented microbial community members. Lett Appl Microbiol 60: 359-366. DOI: 10.1111/lam.12380.
Shinde V, Mukand R, Babel S. 2018. Manual on framework for river health assessment in Thailand. Asian Institute of Tech, Klong Luang Pathumthani, Thailand. https://cgspace.cgiar.org/server/api/core/bitstreams/ 8d1298c3-7f81-4702-8a1c-982a1e7fde44/content.
Tabugo SR, Dalayap R, Malaco A, Alotaibi A, Cordero MA. 2023. High-throughput sequencing as a tool for detecting microbial communities in lake ecosystem and its implications in fish farming in Lake Buluan, Mindanao, Philippines. Pol J Environ Stud 33: 391-404. DOI: 10.15244/pjoes/171715.
Wang L, Zhang J, Li H, Yang H, Peng C, Peng Z, Lu L. 2018. Shift in the microbial community composition of surface water and sediment along an urban river. Sci Total Environ 627: 600-612. DOI: 10.1016/j.scitotenv.2018.01.203.
Withers PJ, Neal C, Jarvie HP, Doody DG. 2014. Agriculture and eutrophication: Where do we go from here?. Sustainability 6 (9): 5853-5875. DOI: 10.3390/su6095853.
Zhang L, Zhong M, Li X, Lu W, Li J. 2020. River bacterial community structure and co-occurrence patterns under the influence of different domestic sewage types. J Environ Manag 266: 110590. DOI: 10.1016/j.jenvman.2020.110590.
Zhao L, Zhang S, Xiao R, Zhang C, Lyu Z, Zhang F. 2024. Diversity and functionality of bacteria associated with different tissues of spider Heteropoda venatoria revealed through integration of high-throughput sequencing and culturomics approaches. Micro Ecol 87 (1): 67. DOI: 10.1007/s00248-024-02383-2.