The combination of chitosan and molasses to improve nutritive value, chemical quality, and in vitro rumen degradability of pineapple peel silage

##plugins.themes.bootstrap3.article.main##

RAKHMAD PERKASA HARAHAP
https://orcid.org/0000-0001-9597-9271
YETI ROHAYETI
DUTA SETIAWAN
https://orcid.org/0000-0002-9646-148X
AGUSTIN HERLIATIKA
https://orcid.org/0000-0003-2778-0855
YENI WIDIWATI
https://orcid.org/0000-0001-7716-0561

Abstract

Abstract. Harahap RP, Rohayeti Y, Setiawan D, Herliatika A, Widiwati Y. 2024. The combination of chitosan and molasses to improve nutritive value, chemical quality, and in vitro rumen degradability of pineapple peel silage. Biodiversitas 25: 2800-2810. This study aimed to evaluate and determine nutritive value, chemical silage quality, in vitro rumen fermentation profile, microbial population, digestibility, and methane (CH4) emission of pineapple (Ananas camosus L.) peel silage with the addition of chitosan and molasses. The experiment was carried out using a 2×3 factorial design with 6 treatments, 4 replications, and different in vitro runs acting as blocks. In addition, the treatments comprised control (no additives), C3 (3 g of chitosan per 1000 g of fresh pineapple peel), C5 (5 g of chitosan per 1000 g of fresh pineapple peel), M20 (20 g of molasses per 1000 g of pineapple peel), C3M20 (3 g of chitosan and 20 g of molasses per 1000 g of pineapple peel), and C5M20 (5 g of chitosan and 20 g of molasses per 1000 g of pineapple peel). The descriptive analysis results for nutritive value showed that the 5 g chitosan group had the highest dry matter (DM) content in pineapple peel silage after 21 days. Chitosan was shown to improve organic matter (OM) and crude protein (CP) levels while reducing hemicellulose content. The administration of molasses significantly reduced weight loss and pH, enhancing preservation quality (P<0.05). The results also showed that chitosan reduced weight loss, particularly at 5 g/kg fresh pineapple peel (P<0.05). Rumen fermentation analysis revealed higher acetic acid levels in silage without molasses (P<0.05), while pH, ammonia (NH3), propionic acid, butyric acid, and branched-chain volatile fatty acid (BCVFA) concentrations did not affect rumen fermentation (P>0.05). However, chitosan increased in vitro dry matter digestibility (IVDMD) and reduced total gas production (P<0.05). Higher levels also reduced microbial and protozoa populations in rumen. Based on the results, the use of both additives improved the quality of silage, where chitosan increased IVDMD and reduced gas production during rumen in vitro fermentation.

##plugins.themes.bootstrap3.article.details##

References
Aili Hamzah AF, Hamzah MH, Che Man H, Jamali NS, Siajam SI, Ismail MH. 2021. Recent updates on the conversion of pineapple waste (Ananas comosus) to value-added products, future perspectives and challenges. Agronomy 11 (11): 2221. DOI: 10.3390/agronomy11112221
Anggraeni AS, Jayanegara A, Sofyan A, Laconi EB, Kumalasari NR, Gunadarma IN, Fidriyanto R. 2023. Physicochemical and microbial properties of total mix ration silage treated with different levels of chitosan. AIP Conf. Proc. DOI: 10.1063/5.0166588
AOAC. 2005. Official Methods of Analysis of AOAC International 20th edition. Association of Official Analytical Chemist, Inc., Virginia (USA).
Babaeinasab Y, Rouzbehan Y, Fazaeli H, Rezaei J. 2015. Chemical composition, silage fermentation characteristics, and in vitro ruminal fermentation parameters of potato-wheat straw silage treated with molasses and lactic acid bacteria and corn silage. J Anim Sci 93 (9): 4377–438. DOI: 10.2527/jas.2015-9082
Beier S, Bertilsson S. 2013. Bacterial chitin degradation-mechanisms and ecophysiological strategies. Front Microbiol 4: 149. DOI: 10.3389/fmicb.2013.00149
Belanche A, Pinloche E, Preskett D, Newbold CJ. 2015. Effects and mode of action of chitosan and ivy fruit saponins on the microbiome, fermentation and methanogenesis in the rumen simulation technique. FEMS Microbiol Ecol 92, fiv160. DOI: 10.1093/femsec/fiv160
Cheung R, Ng T, Wong J, Chan W, 2015. Chitosan: an update on potential biomedical and pharmaceutical applications. Mar Drugs 13(8): 5156–5186. DOI: 10.3390/md13085156
Conway EJ. 1962. Microdiff usion Analysis and Volumetric Error, 5th ed. ed. Crosby Lockwood, London.
de Morais JPG, Cantoia Júnior R, Garcia TM, Capucho E, Campana M, Gandra JR, Ghizzi LG, Del Valle TA. 2021. Chitosan and microbial inoculants in whole-plant soybean silage. J Agric Sci 159(3–4): 227–235. DOI: doi:10.1017/S0021859621000447
Del Valle TA, Antonio G, Zilio EM, de C, Dias MS, da S, Gandra JR, Castro FAB de, Campana M, Morais JPG de. 2020. Chitosan level effects on fermentation profile and chemical composition of sugarcane silage. Brazilian J Vet Res Anim Sci 57(3): e162942. DOI: 10.11606/issn.1678-4456.bjvras.2020.162942
Del Valle TA, Zenatti TF, Antonio G, Campana M, Gandra JR, Zilio EMC, de Mattos LFA, de Morais JGP. 2018. Effect of chitosan on the preservation quality of sugarcane silage. Grass Forage Sci 73(3): 630–638. DOI: 10.1111/gfs.12356
Fang D, Dong Z, Wang D, Li B, Shi P, Yan J, Zhuang D, Shao T, Wang W, Gu M. 2022. Evaluating the fermentation quality and bacterial community of high-moisture whole-plant quinoa silage ensiled with different additives. J Appl Microbiol 132(5): 3578–3589. DOI: 10.1111/jam.15506
Feng B, Peng J, Guo W, Zhu X, Huang W. 2017. The stimulus response of chitosan and its depression effect on talc flotation. Miner Process Extr Metall 127(1): 56–61. DOI: 10.1080/03719553.2017.1288358
Fievez V, Babayemi OJ, Demeyer D. 2005. Estimation of direct and indirect gas production in syringes: A tool to estimate short-chain fatty acid production that requires minimal laboratory facilities. Anim Feed Sci Technol 123–124: 197–210. DOI: 10.1016/j.anifeedsci.2005.05.001
Gandra JR, Machado F, Pedrini C, Oliveira E, Goes R, Gandra ÉR de TB, Takiya C. 2022. Sugarcane total mixed ration silage ensiling with chitosan and homolactic microbial inoculant: characteristics of silage and animal digestion. Rev Bras Saúde E Produção Anim 23. DOI: 10.1590/s1519-9940202200142022
Gandra JR, Oliveira ER, Takiya CS, Goes RHTB, Paiva PG, Oliveira KMP, Gandra ERS, Orbach ND, Haraki HMC. 2016. Chitosan improves the chemical composition, microbiological quality, and aerobic stability of sugarcane silage. Anim Feed Sci Technol 214: 44–52. DOI: 10.1016/j.anifeedsci.2016.02.020
Gandra JR, Takiya CS, Del Valle TA, Oliveira ER, de Goes RHTB, Gandra ERS, Batista JDO, Araki HMC. 2018. Soybean whole-plant ensiled with chitosan and lactic acid bacteria: Microorganism counts, fermentative profile, and total losses. J Dairy Sci 101(9): 7871–7880. DOI: 10.3168/jds.2017-14268
Gasmi Benahmed A, Gasmi A, Dosa A, Chirumbolo S, Mujawdiya PK, Aaseth J, Dadar M, Bjørklund G. 2021. Association between the gut and oral microbiome with obesity. Anaerobe 70: 102248–102248. DOI: 10.1016/j.anaerobe.2020.102248
Goiri I, Oregui LM, Garcia-Rodriguez A. 2009. Dose–response effects of chitosans on in vitro rumen digestion and fermentation of mixtures differing in forage-to-concentrate ratios. Anim Feed Sci Technol 151(3–4): 215–227. DOI: 10.1016/j.anifeedsci.2009.01.016
Gowda NKS, Vallesha NC, Awachat VB, Anandan S, Pal DT, Prasad CS. 2015. Study on evaluation of silage from pineapple (Ananas comosus) fruit residue as livestock feed. Trop Anim Health Prod 47(3): 557–561. DOI: 10.1007/s11250-015-0762-2
Guo G, Chen Y, Wang Q, Xin P, Shimojo M, Shao T. 2014. Silage fermentation characteristics of italian ryegrass (Lolium multiflorum Lam.) harvested at various times on a sunny day. Crop Sci 54(2): 851–858. DOI: 10.2135/cropsci2012.12.0692
Guo X,Wu S, Zheng M, Chen D, Zou X, Chen X, Zhou W, Zhang Q. 2022. Effects of addition of Neolamarckia cadamba leaves and chitosan oligosaccharides on fermentation quality and aerobic stability of sugarcane top silage. Acta Prataculturae Sin 31(6): 202?210. DOI: 10.11686/cyxb2021176
Harahap RP, Setiawan D, Nahrowi N, Suharti S, Obitsu T, Jayanegara A. 2020. Enteric methane emissions and rumen fermentation profile treated by dietary chitosan: a meta-analysis of in vitro experiments. Trop Anim Sci J 43(3): 233–239. DOI: 10.5398/tasj.2020.43.3.233
Harahap RP, Suharti S, Ridla M, Laconi EB, Nahrowi N, Irawan A, Kondo M, Obitsu T, Jayanegara A. 2022. Meta?analysis of dietary chitosan effects on performance, nutrient utilization, and product characteristics of ruminants. Anim Sci J 93(1): e13676. DOI: 10.1111/asj.13676
Harahap RP, Nahrowi, Suharti S, Jayanegara A, Fakhri S. 2023. Enhancing silage quality of Elephant grass and Indigofera legume using shrimp shell-derived chitin and chitosan additives. Livest Res Rural Dev 35(11): 100. DOI: http://www.lrrd.org/lrrd35/11/35100rakh.html.
Haraki HMC, Gandra J, De Oliveira ER, Takiya C. 2018. Effects of chitosan and whole raw soybeans on feeding behavior and heat losses of Jersey heifers. Iran J Appl Anim Sci 8(3): 397–405.
Hashemi M, Zehi Z, Khanzadi S, Rezaie M, Noori S, Afshari A. 2022. Characteristics and antibacterial effect of chitosan coating nanoemulsion containing zataria multiflora and bunium persicum essential oils against listeria monocytogenes. Jundishapur J Nat Pharm Prod 17(4): e120819. DOI: 10.5812/jjnpp-120819
Hu H, Zhao Q, Xie J, Sun D. 2019. Polysaccharides from pineapple pomace: new insight into ultrasonic-cellulase synergistic extraction and hypoglycemic activities. Int J Biol Macromol 121: 1213–1226. DOI: 10.1016/j.ijbiomac.2018.10.054
Jayanegara A, Harahap RP, Rozi RF, Nahrowi. 2018. Effects of lipid extraction on nutritive composition of winged bean (Psophocarpus tetragonolobus), rubber seed (Hevea brasiliensis), and tropical almond (Terminalia catappa). Vet World 11(4): 446–451. DOI: 10.14202/vetworld.2018.446-451
Jayanegara A, Sarwono KA, Kondo M, Matsui H, Ridla M, Laconi EB, Nahrowi. 2017. Use of 3-nitrooxypropanol as feed additive for mitigating enteric methane emissions from ruminants: a meta-analysis. Ital J Anim Sci 17(3): 650–656. DOI: 10.1080/1828051x.2017.1404945
Jiménez-Ocampo R, Valencia-Salazar S, Pinzón-Díaz CE, Herrera-Torres E, Aguilar-Pérez CF, Arango J, Ku-Vera JC. 2019. The role of chitosan as a possible agent for enteric methane mitigation in ruminants. Animals 9(11): 942. DOI: 10.3390/ani9110942
Kasimova M, Velázquez?Campoy A, Nielsen H. 2011. On the temperature dependence of complex formation between chitosan and proteins. Biomacromolecules 12(7): 2534–2543. DOI: 10.1021/bm200344d
Ke W, Wang Y, Rinne M, de Oliveira Franco M, Li F, Lin Y, Zhang Q, Cai Y, Zhang G. 2023. Effects of lactic acid bacteria and molasses on the fermentation quality, in vitro dry matter digestibility, and microbial community of korshinsk peashrub (Caragana korshinskii kom.) silages harvested at two growth stages. Grass Forage Sci 79(1): 56–68. DOI: 10.1111/gfs.12619
Kim S. 2018. Competitive biological activities of chitosan and its derivatives: antimicrobial, antioxidant, anticancer, and anti-inflammatory activities. Int J Polym Sci 2018: 1–13. DOI: 10.1155/2018/1708172
Kirwan SF, Pierce KM, Serra E, McDonald M, Rajauria G, Boland TM. 2021. Effect of chitosan inclusion and dietary crude protein level on nutrient intake and digestibility, ruminal fermentation, and n excretion in beef heifers offered a grass silage based diet. Animals 11(3): 1–14, 771. DOI: 10.3390/ani11030771
Kondo M, Shimizu K, Jayanegara A, Mishima T, Matsui H, Karita S, Goto M, Fujihara T. 2016. Changes in nutrient composition and in vitro ruminal fermentation of total mixed ration silage stored at different temperatures and periods. J Sci Food Agric 96(4): 1175–1180. DOI: 10.1002/jsfa.7200
Meirelles Júnior JR, Oliveira TS, Silva IN, Aniceto ES, Mozelli Filho EJL, Fernandes AM, Souza Filho GA, Gressley T. 2024. Evaluation of treated shrimp shells from artisanal fishing on preservation quality of corn silage. Anim Feed Sci Technol 310: 115926. DOI: 10.1016/j.anifeedsci.2024.115926
Miller DS, Payne PR. 1959. A ballistic bomb calorimeter. Br J Nutr 13(4): 501–508. DOI: 10.1079/bjn19590064
Nayohan S, Wiryawan I, Jayanegara A. 2022. Effect of urea coating by chitosan on the dynamics of ammonia concentration and rumen fermentation in vitro. Iop Conf Ser Earth Environ Sci 951(1): 012004. DOI: 10.1088/1755-1315/951/1/012004
Nielsen NS, Stubbs TL, Garland-Campbell KA, Carter AH. 2019. Rapid estimation of wheat straw decomposition constituents using near-infrared spectroscopy. Agronomy 9(8): 462. DOI: 10.3390/agronomy9080462
Ningsih R. 2023. Effects of black soldier fly oil and calcium soap supplementation on rumen fermentability of garut sheep. Iop Conf Ser Earth Environ Sci 1208(1): 012059. DOI: 10.1088/1755-1315/1208/1/012059
Ogimoto K, Imai S. 1981. Atlas of Rumen Microbiology. Japan Science. Societes Press, Tokyo.
Olfaz M, Kiliç Ü, Yavrucu O. 2019. Determining potential feed value and silage quality of guar bean (Cyamopsis tetragonoloba) silages. Open Life Sci 14(1): 342–348. DOI: 10.1515/biol-2019-0038
Osman O, Elkhair N, Abdoun K. 2020. Effects of dietary supplementation with different concentration of molasses on growth performance, blood metabolites and rumen fermentation indices of nubian goats. BMC Vet Res 16 (1). DOI: 10.1186/s12917-020-02636-5
Ottoni D, Teixeira A de M, Gonçalves LC, Da Silva NTA, Cruz DSG, Côrtes IHG, De Oliveira JPCA, Jayme DG. 2021. Optimization tifton-85 grass cutting for productivity and nutrient value. Biosci J 37: e37009. DOI: 10.14393/bj-v37n0a2021-48179
Petri R, Forster R, Yang W, McKinnon J, McAllister T. 2012. Characterization of rumen bacterial diversity and fermentation parameters in concentrate fed cattle with and without forage. J Appl Microbiol 112(6): 1152–1162. DOI: 10.1111/j.1365-2672.2012.05295.x
Ramya S, Gulab P, Harpreet O, Sukhdeep K, Anu K. 2021. Improvement in the quality attributes of forage cowpea by use of liquid microbial inoculants. Indian J Anim Res 56(8): 959–965. DOI: 10.18805/ijar.b-4503
Ravelo A, Agustinho B, Arce-Cordero J, Monterio H, Bennet S, Sarmikasoglou E, Vinyard J, Vieira ERQ, Lobo RR, Ferraretto LF, Vyas D, Faciola A. 2022. Effects of partially replacing dietary corn with molasses, condensed whey permeate, or treated condensed whey permeate on ruminal microbial fermentation. J Dairy Sci 105(3): 2215–2227. DOI: 10.3168/jds.2021-20818
Ridla, M., & Uchida, S., 1998. Effects of combined treatment of lactic acid bacteria and cell wall degrading enzymes on fermentation and composition of rhodegrass (Chleris gaynan Kunth.) silage. Asian-Australasian J Anim Sci 11(5): 522–529. DOI: 10.5713/ajas.1998.522
Roda A, Lambri M. 2019. Food uses of pineapple waste and by-products: a review. Int J Food Sci Technol 54(4): 1009–1017. DOI: doi: 10.1111/ijfs.14128
Rohmah, W., Firmansyah, B., Effendi, M., & Sucipto, S., 2019. Applying response surface methodology to optimise maize silage making for cattle feed. Adv. Food Sci. Sustain. Agric. Agroindustrial Eng. 2, 21–29. DOI: 10.21776/ub.afssaae.2019.002.01.4
Rosmaina, Febriandi N, Ariyanti E, Elfianis R, Nilahayati, Zulfahmi. 2022. Pineapple genetic diversity in Riau peat land assessed by Random Amplified Polymorphic DNA (RAPD) marker. IOP Conf Ser Earth Environ Sci 1114(1): 012020. DOI: doi.org/10.1088/1755-1315/1114/1/012020
Sánchez-Machado DI, López-Cervantes J, Escárcega-Galaz AA, Valenzuela-Rojo RD, Campas-Baypoli ON, Cantú-Soto EU, Mendivil-Gastelum CU. 2021. Effect of chitosan membranes against gram-negative bacteria isolated from cutaneous ulcers. Nov Biotechnol Chim 20(1): e806. DOI: 10.36547/nbc.806
SAS I. 2004. SAS ®/STAT Software, Release 9.4. SASInstitute, Inc., Cary, NC. USA.
S?rakaya S, Büyükk?l?ç Beyzi S. 2022. Treatment of alfalfa silage with chitosan at different levels to determine chemical, nutritional, fermentation, and microbial parameters. J Anim Feed Sci 31(1): 73–80. DOI: 10.22358/jafs/147014/2022
Sukri SAM, Andu Y, Sarijan S, Khalid H-NM, Kari ZA, Harun HC, Rusli ND, Mat K, Khalif RIAR, Wei LS, Rahman MM, Hakim AH, Norazmi Lokman NH, Hamid NKA, Khoo MI, Doan HV. 2023. Pineapple waste in animal feed: A review of nutritional potential, impact and prospects. Ann Anim Sci 23(2): 339–352. DOI: 10.2478/aoas-2022-0080
Theodorou MK, Williams BA, Dhanoa MS, McAllan AB, France J. 1994. A simple gas production method using a pressure transducer to determine the fermentation kinetics of ruminant feeds. Anim Feed Sci Technol 48(3–4): 185–197. DOI: 10.1016/0377-8401(94)90171-6
Tilley JMA, Terry RA. 1963. A two stage technique for the in vitro digestion of forage. J Br Grassl Soc 18(2): 104–111. DOI: 10.1111/j.1365-2494.1963.tb00335.x
Upadhyay A, Lama JP, Tawata S. 2013. Utilization of pineapple waste: a review. J Food Sci Technol Nepal 6: 10–18. DOI: 10.3126/jfstn.v6i0.8255
Van Soest PJ, Robertson JB, Lewis BA. 1991. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J Dairy Sci 74(10): 3583–3597. DOI: 10.3168/jds.S0022-0302(91)78551-2
Wencelová M, Váradyová Z, Mihaliková K, Kišidayová S, Jal? D. 2014. Evaluating the effects of chitosan, plant oils, and different diets on rumen metabolism and protozoan population in sheep. Turkish J Vet Anim Sci 38(1): 26–33. DOI: 10.3906/vet-1307-19
Xing Y, Xu Q, Li X, Chen C, Ma L, Li S, Che Z, Lin H. 2016. Chitosan-based coating with antimicrobial agents: preparation, property, mechanism, and application effectiveness on fruits and vegetables. Int J Polym Sci 2016: 1–24. DOI: 10.1155/2016/4851730
Zhao J, Dong Z, Li J, Chen L, Bai Y, Jia Y, Shao T. 2019. Effects of lactic acid bacteria and molasses on fermentation dynamics, structural and nonstructural carbohydrate composition and in vitro ruminal fermentation of rice straw silage. Asian-Australasian J Anim Sci 32(6): 783–79. DOI: 10.5713/ajas.18.0543