Abundance of arthropod pests and their natural enemies on cassava fields implementing different agroecosystem management

##plugins.themes.bootstrap3.article.main##

RETNO DYAH PUSPITARINI
ALDY PURWANTORO
VANADYA DECEMBRY ALODYA PRADIFTA
FAIZ NASHIRUDDIN MUHAMMAD
ITO FERNANDO

Abstract

Abstract. Puspitarini RD, Purwantoro A, Pradifta VDA, Muhammad FN, Fernando I. 2024. Abundance of arthropod pests and their natural enemies on cassava fields implementing different agroecosystem management. Biodiversitas 25: 2901-2907. Arthropod pests pose significant challenges to cassava (Manihot esculenta Crantz) cultivation, with detrimental effects on yield and crop quality. Agroecosystem management plays a crucial role in shaping the populations of pests and their natural enemies. Therefore, understanding and implementing appropriate management practices are essential for developing integrated pest management approaches that are effective and environmentally friendly. Our study examined herbivorous and predatory arthropod abundance across six cassava plantations with varying management practices. Field characteristics were examined to elucidate the factors contributing to differences in arthropod assemblages observed among the fields. We used Analysis of Variance (ANOVA) to assess the differences in arthropod abundance across the plantations. Additionally, arthropod assemblage was analyzed using analysis of similarity based on the Bray-Curtis Index, with differences visualized using non-metric multidimensional scaling (NMDS) plots. The high abundance of herbivorous arthropods in certain fields appeared linked to narrow plant spacing, which might facilitate pest dispersal. Furthermore, complete weed removal and the absence of organic fertilizer application, such as manure, could reduce predatory arthropod populations. Additionally, fields situated at lower altitudes demonstrated increased susceptibility to pest outbreaks. Therefore, strategic agroecosystem management is imperative, incorporating practices to mitigate pest population growth while conserving predatory arthropods. Comprehending the interplay between management practices and arthropod dynamics is crucial for developing sustainable pest management strategies in cassava cultivation.

##plugins.themes.bootstrap3.article.details##

References
Aguilar-Fenollosa E, Rey-Caballero J, Blasco JM, Segarra-Moragues JG, Hurtado MA, Jaques JA. 2016. Patterns of ambulatory dispersal in Tetranychus urticae can be associated with host plant specialization. Exp Appl Acarol 68: 1–20. DOI: 10.1007/s10493-015-9969-1.
Aguilera G, Riggi L, Miller K, Roslin T, Bommarco R. 2021. Organic fertilisation enhances generalist predators and suppresses aphid growth in the absence of specialist predators. J Appl Ecol 58: 1455–65. DOI: 10.1111/1365-2664.13862.
Ally HM, Hamss H El, Simiand C, Maruthi MN, Colvin J, Omongo CA, Delatte H. 2019. What has changed in the outbreaking populations of the severe crop pest whitefly species in cassava in two decades? Sci Rep 9: 14796. DOI: 10.1038/s41598-019-50259-0.
Asiry KA, Huda MN, Mousa MAA. 2022. Abundance and population dynamics of the key insect pests and agronomic traits of tomato (Solanum lycopersicon L.) varieties under different planting densities as a sustainable pest control method. Horticulturae 8: 976. DOI: 10.3390/horticulturae8100976.
Asiwe JAN, Nokoe S, Jackai LEN, Ewete FK. 2005. Does varying cowpea spacing provide better protection against cowpea pests? Crop Prot 24: 465–71. DOI: 10.1016/j.cropro.2004.09.014.
Atakan E, Pehlivan S. 2020. Influence of weed management on the abundance of thrips species (Thysanoptera) and the predatory bug, Orius niger (Hemiptera: Anthocoridae) in citrus mandarin. Appl Entomol Zool 55: 71–81. DOI: 10.1007/s13355-019-00655-9.
Azandémè-Hounmalon GY, Fellous S, Kreiter S, Fiaboe KKM, Subramanian S, Kungu M, Martin T. 2014. Dispersal behavior of Tetranychus evansi and T. urticae on tomato at several spatial scales and densities: implications for integrated pest management. Edited by Youjun Zhang. PLoS One 9: e95071. DOI: 10.1371/journal.pone.0095071.
Bellotti A, Herrera Campo BV, Hyman G. 2012. Cassava production and pest management: present and potential threats in a changing environment. Trop Plant Biol 5: 39–72. DOI: 10.1007/s12042-011-9091-4.
Chapman TC, McPhee JE, Dean G, Corkrey R. 2023. Soil arthropod responses to subsoil manuring in irrigated vegetable and rainfed grain production. Soil Tillage Res 227: 105600. DOI: 10.1016/j.still.2022.105600.
Chen L, Yuan P, Pozsgai G, Chen P, Zhu H, You M. 2019. The impact of cover crops on the predatory mite Anystis baccarum (Acari, Anystidae) and the leafhopper pest Empoasca onukii (Hemiptera, Cicadellidae) in a tea plantation. Pest Manag Sci 75: 3371–80. DOI: 10.1002/ps.5489.
Chisenga SM, Workneh TS, Bultosa G, Alimi BA. 2019. Progress in research and applications of cassava flour and starch: a review. J Food Sci Technol 56: 2799–2813. DOI: 10.1007/s13197-019-03814-6.
Cuthbertson A, Qiu B-L, Murchie A. 2014. Anystis baccarum: an important generalist predatory mite to be considered in apple orchard pest management strategies. Insects 5: 615–28. DOI: 10.3390/insects5030615.
Drake CJ and Ruhoff FA. 1965. Lacebugs of the world: a catalog (Hemiptera: Tingidae). Bull United States Natl Museum, no. 243: 1–634. DOI: 10.5479/si.03629236.243.1.
Fanani MZ, Rauf A, Maryana N, Nurmansyah A, Hindayana D. 2019. Geographic distribution of the invasive mealybug Phenacoccus manihoti and its introduced parasitoid Anagyrus lopezi in parts of indonesia. Biodiversitas J Biol Divers 20. DOI: 10.13057/biodiv/d201238.
Frank JH, Bennett FD, Cromroy HL. 1992. Distribution and prey records for Oligota minuta (Coleoptera: Staphylinidae), a predator of mites. Florida Entomol 75: 376. DOI: 10.2307/3495859.
Gagné RJ. 1995. Revision of tetranychid (Acarina) mite predators of the genus Feltiella (Diptera: Cecidomyiidae). Ann Entomol Soc Am 88: 16–30. DOI: 10.1093/aesa/88.1.16.
Gilbert N, Raworth DA. 1996. Forum: insects and temperature—a general theory. Can Entomol 128: 1–13. DOI: 10.4039/Ent1281-1.
Gurr GM, Wratten SD, Landis DA, You M. 2017. Habitat management to suppress pest populations: progress and prospects. Annu Rev Entomol 62: 91–109. DOI: 10.1146/annurev-ento-031616-035050.
Houck MA. 1986. Prey preference in Stethorus punctum (Coleoptera: Coccinellidae). Environ Entomol 15: 967–70. DOI: 10.1093/ee/15.4.967.
Kayiwa R, Kasedde H, Lubwama M, Kirabira JB. 2022. Active pharmaceutical ingredients sequestrated from water using novel mesoporous activated carbon optimally prepared from cassava peels. Water 14: 3371. DOI: 10.3390/w14213371.
Krantz GW, Walter DE. 2009. A Manual of Acarology: Third Edition. Lubbock, Texas: Texas Tech University Press.
Latif S, Müller J. 2015. Potential of cassava leaves in human nutrition: a review. Trends Food Sci Technol 44: 147–58. DOI: 10.1016/j.tifs.2015.04.006.
Li S, Cui Y, Zhou Y, Luo Z, Liu J, Zhao M. 2017. The industrial applications of cassava: current status, opportunities and prospects. J Sci Food Agric 97: 2282–90. DOI: 10.1002/jsfa.8287.
Lu F, Liang X, Lu H, Li Q, Chen Q, Zhang P, Li K, et al. 2017. Overproduction of superoxide dismutase and catalase confers cassava resistance to Tetranychus cinnabarinus. Sci Rep 7: 40179. DOI: 10.1038/srep40179.
Madden MK, Widick I V, Blubaugh CK. 2021. Weeds impose unique outcomes for pests, natural enemies, and yield in two vegetable crops. Edited by Melody Keena. Environ Entomol 50: 330–36. DOI: 10.1093/ee/nvaa168.
Mailloux J, Bellec F Le, Kreiter S, Tixier M-S, Dubois P. 2010. Influence of ground cover management on diversity and density of phytoseiid mites (Acari: Phytoseiidae) in guadeloupean citrus orchards. Exp Appl Acarol 52: 275–90. DOI: 10.1007/s10493-010-9367-7.
Mani M, Shivaraju C. 2016. Mode of spread of mealybugs. In Mealybugs Their Manag Agric Hortic Crop, 113–16. New Delhi: Springer India. DOI: 10.1007/978-81-322-2677-2_8.
McMurtry JA, Moraes GJDE, Sourassou NF. 2013. Revision of the lifestyles of phytoseiid mites (Acari: Phytoseiidae) and implications for biological control strategies. Syst Appl Acarol 18: 297. DOI: 10.11158/saa.18.4.1.
Mohamed MA. 2012. Impact of planting dates, spaces and varieties on infestation of cucumber plants with whitefly, bemisia tabaci (genn.). J Basic Appl Zool 65: 17–20. DOI: 10.1016/j.jobaz.2012.01.003.
Ngongo Y, Basuki T, DeRosari B, Mau YS, Noerwijati K, DaSilva H, Sitorus A, Kotta NRE, Utomo WH, Wisnubroto EI. 2022. The roles of cassava in marginal semi-arid farming in East Nusa Tenggara—Indonesia. Sustainability 14: 5439. DOI: 10.3390/su14095439.
Norris RF, Kogan M. 2005. Ecology of ineteractions between weeds and arthropods. Annu Rev Entomol 50: 479–503. DOI: 10.1146/annurev.ento.49.061802.123218.
Nurkomar I, Trisnawati DW, Aisyah SN. 2021. Pest insects in cassava plantations intercrop with different plants at Gunungkidul, Yogyakarta, indonesia. Serangga 21: 1–12.
Parsa S, Medina C, Rodríguez V. 2015. Sources of pest resistance in cassava. Crop Prot 68: 79–84. DOI: 10.1016/j.cropro.2014.11.007.
Puech C, Poggi S, Baudry J, Aviron S. 2015. Do farming practices affect natural enemies at the landscape scale? Landsc Ecol 30: 125–40. DOI: 10.1007/s10980-014-0103-2.
Puspitarini RD, Fernando I, Setiawan Y, Anggraini D, Rizqi HA. 2021. Short communication: first record of the cassava lace bug Vatiga illudens (Drake, 1922) (Hemiptera: Heteroptera: Tingidae) from East Java, Indonesia. Biodiversitas J Biol Divers 22. DOI: 10.13057/biodiv/d220738.
Rowen EK, Tooker JF. 2021. Ground predator activity-density and predation rates are weakly supported by dry-stack cow manure and wheat cover crops in no-till maize. Edited by Rebecca Schmidt-Jeffris. Environ Entomol 50: 46–57. DOI: 10.1093/ee/nvaa136.
Schauff ME. 2001. Collecting and preserving insects and mites?: techniques & tools. Washington, D.C.: Systematic Entomology Laboratory, USDA. DOI: LK - https://worldcat.org/title/48655065.
Schulthess F, Baumgärtner JU, Delucchi V, Gutierrez AP. 1991. The influence of the cassava mealybug, Phenacoccus manihoti Mat.?Ferr. (Hom., Pseudococcidae) on yield formation of cassava, Manihot esculenta Crantz. J Appl Entomol 111: 155–65. DOI: 10.1111/j.1439-0418.1991.tb00306.x.
Seeman OD, Beard JJ. 2011. Identification of exotic pest and australian native and naturalised species of Tetranychus (Acari: Tetranychidae). Zootaxa 72: 1-72. DOI: 10.11646/zootaxa.2961.1.1.
Sholihin, Indiati SW, Noerwijati K, Wahyuni TS, Kuswantoro H, Suhartina, Soehendi R, et al. 2022. Improving the genetics of tuber yield and resistance to mite to avoid mite incident and to increase the productivity of cassava (Manihot esculenta Crantz). Scientifica 1–9. DOI: 10.1155/2022/6309679.
Sivamani S, Chandrasekaran AP, Balajii M, Shanmugaprakash M, Hosseini-Bandegharaei A, Baskar R. 2018. Evaluation of the potential of cassava-based residues for biofuels production. Rev Environ Sci Bio/Technology 17: 553–70. DOI: 10.1007/s11157-018-9475-0.
Skendži? S, Zovko M, Živkovi? IP, Leši? V, Lemi? D. 2021. The impact of climate change on agricultural insect pests. Insects 12: 440. DOI: 10.3390/insects12050440.
Sudiarta IP, Dinarkaya SM, Devi KS, Ariyanta IPB, Wirya GNAS, Sugiarta D, Selangga DGW, et al. 2024. Occurrence of cassava lace bug Vatiga illudens (Drake, 1922) (Hemiptera: Heteroptera: Tingidae) in Bali, Indonesia. J Trop Biodivers Biotechnol 9: 87438. DOI: 10.22146/jtbb.87438.
Supartha IW, Widaningsih D, Susila IW, Yudha IKW, Utama IWEK, Wiradana PA. 2022. Range of host plants, spatial distribution, and insect predator of Phenacoccus manihoti (Hemiptera: Pseudococcidae) as an emerging pest of cassava plants in Bali, Indonesia. Biodiversitas J Biol Divers 23. DOI: 10.13057/biodiv/d230629.
Suryaningrat IB, Amilia W, Choiron M. 2015. Current condition of agroindustrial supply chain of cassava products: a case survey of East Java, Indonesia. Agric Agric Sci Procedia 3: 137–42. DOI: 10.1016/j.aaspro.2015.01.027.
Takano S, Utsumi Y, Nagano A, Takahashi S, Ezoe A, Seki M, Le TX, Takasu K. 2023. Induction of leaf curling in cassava plants by the cassava mealybug Phenacoccus manihoti (Hemiptera: Pseudococcidae). Appl Entomol Zool 58: 279–90. DOI: 10.1007/s13355-023-00832-x.
Tokunaga H, Baba T, Ishitani M, Ito K, Kim O-K, Ham LH, Le HK, et al. 2018. Sustainable management of invasive cassava pests in Vietnam, Cambodia, and Thailand. In: Kokubun M, Asanuma S (eds). Crop Production under Stressful Conditions. Singapore: Springer. DOI: 10.1007/978-981-10-7308-3_8.
Triplehorn CA, Johnson NF, Borror DJ. 2005. Borror and DeLong’s Introduction to the Study of Insects. 7th ed. Belmond, CA: Brooks Cole.
Williams DJ. 2004. Mealybugs of Southern Asia. London: Natural History Museum.
Zhao Z, Sandhu HS, Gao F, He D. 2015. Shifts in natural enemy assemblages resulting from landscape simplification account for biocontrol loss in wheat fields. Ecol Res 30: 493–98. DOI: 10.1007/s11284-015-1245-7.

Most read articles by the same author(s)