Molecular screening and allele identification of Thai banana genotypes for resistance to Fusarium wilt using validated SCAR markers

##plugins.themes.bootstrap3.article.main##

THANITA BOONSRANGSOM
https://orcid.org/0000-0001-8362-1432
WERAPAT CHANSONGKRAM
JUTAMAS SAENGJANCHAY
JUANGJUN JUMPATHONG
https://orcid.org/0000-0002-1582-9378
PONGSANAT PONGCHAROEN
WANWARANG PATHAICHINDACHOTE
https://orcid.org/0000-0003-1195-8137
KUMROP RATANASUT
KAWEE SUJIPULI
https://orcid.org/0000-0002-8307-4755

Abstract

Abstract. Boonsrangsom T, Chansongkram W, Saengjanchay J, Jumpathong J, Pongcharoen P, Pathaichindachote W, Ratanasut K, Sujipuli K. 2024. Molecular screening and allele identification of Thai banana genotypes for resistance to Fusarium wilt using validated SCAR markers. Biodiversitas 25: 2590-2601. Fusarium wilt (FW) caused by Fusarium oxysporum f. sp. cubense (Foc), significantly damages commercial banana (Musa spp.) cultivation worldwide, including in Thailand. Cultivating resistant banana genotypes is crucial for managing FW. However, the unique biology of banana plants makes this process challenging and time-consuming. Genetic markers can enhance the efficiency and precision of traditional breeding methods for developing resistant cultivars. This study aimed to screen and identify Fusarium wilt-resistant alleles across six Thai banana genomes. Established sequence-characterized amplified region (SCAR) markers, strongly linked to loci associated with Foc susceptibility or resistance, were used in this investigation. The results revealed significant genetic differences in FW resistance loci among 106 Thai banana genotypes, comprising AA, AAA, AAB, ABB, ABBB, and BB genomes. All genotypes carried at least one FW resistance locus except Musa (AAA) 'Kluai Khieo Pakchong'. Cluster analysis divided the 106 genotypes into two FocR1-resistant and four FocTR4-resistant clusters. No allelic variation was found among M. balbisiana with the BB genomes. Further research is needed to understand the interaction between banana genotypes and Foc strains. These validated SCAR markers will assist in genotype selection for field and greenhouse assessments as part of the Thai banana genetic improvement program.

##plugins.themes.bootstrap3.article.details##

References
Arinaitwe IK, Teo CH, Kayat F, Tumuhimbise R, Uwimana B, Kubiriba J, Swennen R, Harikrishna JA, Othman RY. 2019. Evaluation of banana germplasm and genetic analysis of an F1 population for resistance to Fusarium oxysporum f. sp. cubense race 1. Euphytica 215 (10): 175. DOI: 10.1007/s10681-019-2493-3.
Boonsrangsom T, Fuenghoi C, Premjet D, Suvittawat K, Ratanasut K, Sujipuli K. 2023. Genetic relationships and genome verification of Thai banana cultivars using random amplification of polymorphic DNA (RAPD) markers. Biodiversitas 24: 3758-3765. DOI: 10.13057/biodiv/d240713.
Boonsrangsom T, Phetnin B, Ratanasut K, Sujipuli K. 2020. Assessment of genetic diversity among Musa cultivars based on sequence-related amplified polymorphism technique. NUJST 28 (2): 52-61. DOI: 10.14456/nujst.2020.15.
Changkham W, Boonsrangsom T. 2021. Assessment of genetic diversity among ‘Kluai Khai’ cultivars based on SRAP markers. NAJ 18 (1): e0180101. [Available on: https://li01.tci-thaijo.org/index.php/aginujournal/article/view/248460]
Chen A, Sun J, Matthews A, Armas-Egas L, Chen N, Hamill S, Mintoff S, Tran-Nguyen LTT, Batley J, Aitken EAB. 2019. Assessing variations in host resistance to Fusarium oxysporum f. sp. cubense race 4 in Musa species, with a focus on the subtropical race 4. Front Microbiol 10: 1062. DOI: 10.3389/fmicb.2019.01062.
Cunha CMS, Hinz RH, Pereira A, Tcacenco FA, Paulino EC, Stadnik MJ. 2015. A SCAR marker for identifying susceptibility to Fusarium oxysporum f. sp. cubense in banana. Sci Hortic 191: 108-112. DOI: 10.1016/j.scienta.2015.04.038.
Das BK, Saini A, Bhagwat SG, Jawali N. 2006. Development of SCAR markers for identification of stem rust resistance gene Sr31 in the homozygous or heterozygous condition in bread wheat. Plant Breed 125: 544-549. DOI: 10.1111/j.1439-0523.2006.01282.x.
Dita M, Barquero M, Heck D, Mizubuti ESG, Staver CP. 2018. Fusarium wilt of banana: current knowledge on epidemiology and research needs toward sustainable disease management. Front Plant Sci 9: 1468. DOI: 10.3389/fpls.2018.01468.
El-Shahed AA, Abdellatif KF, Ibrahim IA, Mohamed AM, Abdelsalam IZ, Elsehrawy OA. 2017. Efficiency of sequence related amplified polymorphism (SRAP) and target region amplified polymorphism (TRAP) markers in detecting banana somaclonal variants. Afr J Biotechnol 16: 879-888. DOI: 10.5897/AJB2017.15893.
Gayral P, Noa-Carrazana JC, Lescot M, Lheureux F, Lockhart BEL, Matsumoto T, Piffanelli P, Iskra-Caruana M. 2008. A single banana streak virus integration event in the banana genome as the origin of infectious endogenous pararetrovirus. J Virol 82: 6697-6710. DOI: 10.1128/JVI.00212-08.
Ghag SB, Shekhawat UK, Ganapathi TR. 2014. Characterization of Fusarium wilt resistant somaclonal variants of banana cv. Rasthali by cDNA-RAPD. Mol Biol Rep 41: 7929-7935. DOI: 10.1007/s11033-014-3687-3.
Guo L, Han L, Yang L, Zeng H, Fan D, Zhu Y, Feng Y, Wang G, Peng C, Jiang X, Zhou D, Ni P, Liang C, Liu L, Wang J, Mao C, Fang X, Peng M, Huang J. 2014. Genome and transcriptome analysis of the fungal pathogen Fusarium oxysporum f. sp. cubense causing banana vascular wilt disease. PLoS One 9: e95543. DOI: 10.1371/journal.pone.0095543.
Hampl V, Pavlícek A, Flegr J. 2001. Construction and bootstrap analysis of DNA fingerprinting-based phylogenetic trees with the freeware program FreeTree: application to trichomonad parasites. Int J Syst Evol Microbiol 51 (3): 731-735. DOI: 10.1099/00207713-51-3-731.
Hiremani NS, Dubey SC. 2019. Phylogenetic relationship among Indian population of Fusarium oxysporum f. sp. lentis infecting lentil and development of specific SCAR markers for detection. 3 Biotech 9 (5): 196. DOI: 10.1007/s13205-019-1734-4.
Huang B, Xu L, Molina AB. 2005. Preliminary evaluation of IMTP-III varieties and local cultivars against Fusarium wilt disease in South China. In: Proceedings of the 3rd BAPNET Steering Committee meeting held in Guangzhou, China. 23-26 November 2004.
Hudson O, Waliullah S, Fulton JC, Ji P, Dufault NS, Keinath A, Ali ME. 2021. Marker development for differentiation of Fusarium oxysporum f. sp. niveum Race 3 from Races 1 and 2. Int J Mol Sci 22 (2): 822. DOI: 10.3390/ijms22020822.
Igwe DO, Ihearahu OC, Osano AA, Acquaah G, Ude GN. 2022. Assessment of genetic diversity of Musa species accessions with variable genomes using ISSR and SCoT markers. Genet Resour Crop Evol 69: 49-70. DOI: 10.1007/s10722-021-01202-8.
Jaber E, Srour AY, Zambounis A, Vakalounakis DJ, Doulis AG. 2020. Identification of SCAR markers linked to the Foc gene governing resistance to Fusarium oxysporum f. sp. cucumerinum in cucumber cv. SMR-18. Eur J Plant Pathol 157: 845-855. DOI: 10.1007/s10658-020-02045-2.
Jaccard P. 1908. Nouvelles recherches sur la distribution florale. Bull Soc Vaud Sci Nat 44: 223-270.
Jadhav S, Kumar A, Lal SK, Akhtar J, Aski M, Mishra GP, Javeria S. 2022. SCAR marker development for quick detection of Fusarium oxysporum f. sp. lentis. Indian J Agric Sci 92 (2): 278-280. DOI: 10.56093/ijas.v92i2.122252.
Joshi K, Chavan P. 2012. Development of sequence characterized amplified region from random amplified polymorphic DNA amplicons. Methods Mol Biol 862: 123-134. DOI: 10.1007/978-1-61779-609-8_10.
Karapetsi L, Nianiou-Obeidat I, Zambounis A, Osathanunkul M, Madesis P. 2020. Molecular screening of domestic apple cultivars for scab resistance genes in Greece. Czech J Genet Plant Breed 56: 165-169. DOI: 10.17221/119/2019-CJGPB.
Kiran U, Khan S, Mirza KJ, Ram M, Abdin MZ. 2010. SCAR markers: a potential tool for authentication of herbal drugs. Fitoterapia 81: 969-976. DOI: 10.1016/j.fitote.2010.08.002.
Larter LMN. 1947. Report on banana breeding. v.34, p.24. Department of Agriculture of Jamaica Bulletin, Kingstone.
Li LF, Ge XJ. 2017. Origin and domestication of cultivated banana. Ecol Genet Genome 2: 1-2. DOI: 10.1016/j.egg.2016.10.001.
Magdama F, Monserrate-Maggi L, Serrano L, Sosa D, Geiser DM, Jime´nez-Gasco MDM. 2019. Comparative analysis uncovers the limitations of current molecular detection methods for Fusarium oxysporum f. sp. cubense race 4 strains. PLoS One 14 (9): e0222727. DOI: 10.1371/journal.pone.0222727.
Mahmoud AF, Abd El-Fatah BES. 2020. Genetic diversity studies and identification of molecular and biochemical markers associated with Fusarium wilt resistance in cultivated faba bean (Vicia faba). Plant Pathol J 36 (1): 11-28. DOI: 10.5423/PPJ.OA.04.2019.0119.
Mertens A, Bawin Y, Vanden Abeele S, Kallow S, Toan Vu D, Thi Le L, Dang Vu T, Swennen R, Vandelook F, Panis B, Janssens SB. 2021. Genetic diversity and structure of Musa balbisiana populations in Vietnam and its implications for the conservation of banana crop wild relatives. PLoS One 16 (6): e0253255. DOI: 10.1371/journal.pone.0253255.
Mingmanit Y, Boonsrangsom T, Sujipuli K, Ratanasut K, Inthima P. 2023. Pollen viabilities and gene expression profiles across Musa genomes. AoB Plants 15: 1-11. DOI: 10.1093/aobpla/plad052.
Molina AB, Williams RC, Hermanto C, Suwanda B, Komolong B, Kokoa P. 2010. Final report: mitigating the threat of Fusarium wilt: understanding the agroecological distribution of pathogenic forms and developing disease management strategies. ACIAR Publication, Canberra, Australia.
Mutlu N, Demirelli A, Ilbi H, Ikten C. 2015. Development of co-dominant SCAR markers linked to resistant gene against the Fusarium oxysporum f. sp. radicis-lycopersici. Theor Appl Genet 128 (9): 1791-1798. DOI: 10.1007/s00122-015-2547-4.
Niwas R, Chand G, Gupta RN. 2022. Fusarium wilt: a destructive disease of banana and their sustainable management. In: Mirmajlessi SM (ed.). Fusarium: an overview of the genus. InTech. DOI: 10.5772/intechopen.101496.
Nwauzoma AB, Uma S, Saraswathi MS, Mustaffa M. 2011. Developing markers for Sigatoka leaf spot disease (Mycosphaerella musicola Leach) resistance in banana (Musa spp.). Afr J Biotechnol10: 6213-6219. DOI: 10.5897/AJB11.485.
Ploetz RC. 2015. Management of Fusarium wilt of banana: a review with special reference to tropical race 4. Crop Prot 73: 7-15. DOI: 10.1016/j.cropro.2015.01.007.
Premjet D, Boonsrangsom T, Sujipuli K, Rattanasut K, Kongbangkerd A, Premjet S., 2022. Morphological and molecular characterizations of Musa (ABB) ‘Mali-Ong’ in Thailand. Biol 11: 1429. DOI: 10.3390/biology11101429.
Quoc NB, Trang HTT, Phuong NDN, Chau NNB, Jantasuriyarat C. 2021. Development of a SCAR marker linked to fungal pathogenicity of rice blast fungus Magnaporthe Oryzae. Int Microbiol 24: 149-156. DOI: 10.1007/s10123-020-00150-0.
Qv M, Feng G, Chen S, Chen H, Chen C, Wang F, Lv S, Dai L, Liu H, Huang B, Li X, Su Z, Xu C. 2024. The development and utilization of two SCAR markers linked to the resistance of banana (Musa spp. AAA) to Fusarium oxysporum f. sp. cubense race 4. Euphytica 220 (5): 69. DOI: 10.1007/s10681-024-03323-4.
Ramu V, Venkatarangaiah K, Krishnappa P, Shimoga Rajanna SK, Deeplanaik N, Chandra Pal A, Kini KR. 2016. Identification of biomarkers for resistance to Fusarium oxysporum f. sp. cubense infection and in silico studies in Musa paradisiaca cultivar Puttabale through proteomic approach. Proteomes 4 (1): 9. DOI: 10.3390/proteomes4010009.
Rebouças TA, Haddad F, Ferreira CF, de Oliveira SAS, da Silva Ledo CA, Amorim EP. 2018. Identification of banana genotypes resistant to Fusarium wilt race 1 under field and greenhouse conditions. Sci Hortic 239: 308-313. DOI: 10.1016/j.scienta.2018.04.037.
Rocha AJ, Soares JMDS, Nascimento FDS, Santos AS, Amorim VBO, Ferreira CF, Haddad F, Santos-Serejo JAD, Amorim, EP. 2021. Improvements in the resistance of the banana species to Fusarium wilt: a systematic review of methods and perspectives. J Fungi 7: 249. DOI: 10.3390/jof7040249.
Safhi FA, Alshamrani SM, Alshaya DS, Hussein MAA, El-Moneim DA. 2023. Genetic diversity analysis of banana cultivars (Musa sp.) in Saudi Arabia based on AFLP Marker. Curr Issues Mol Biol 45 (3): 1810-1819. DOI: 10.3390/cimb45030116.
Sanyong S, Amarakul V, Premjet D, Ratanasut K, Boonsrangsom T, Pongcharoen P, Jumpathong J, Prasarnpun S, Suvittawat K, Sujipuli K. 2020. Evaluation of Fusarium wilt resistance among Thai banana cultivars (Musa spp.). NU Int J Sci 17: 114-129. [Available on: https://www.sci.nu.ac.th/sciencejournal/index.php/sci/article/view/ID468]
Sardos J, Breton C, Perrier X, Van den Houwe I, Carpentier S, Paofa J, Rouard M, Roux N. 2022. Hybridization, missing wild ancestors and the domestication of cultivated diploid bananas. Front. Plant Sci 13: 969220. DOI: 10.3389/fpls.2022.969220.
Silayoi B. 2015. Banana. Kasetsart University Publishing, Bangkok, 512 pp. [Thai]
Silva PRO, de Jesus ON, Bragança CAD, Haddad F, Amorim EP, Ferreira CF. 2016. Development of a thematic collection of Musa spp. accessions using SCAR markers for preventive breeding against Fusarium oxysporum f. sp. cubense tropical race 4. Genet Mol Res 15: gmr7765. DOI: 10.4238/gmr.15017765.
Slameto. 2023. Genetic diversity and molecular analysis using RAPD markers of banana cultivars in the five regions of East Java, Indonesia.
Smith MK, Daniells JW, Peasley D, O'Neill WT, Samuelian SK, Wright C, Drenth A. 2018. Field evaluation of six Gros Michel banana accessions (Musa spp., AAA group) for agronomic performance, resistance to Fusarium wilt race 1 and yellow Sigatoka. Crop Prot 113: 84-89. DOI: 10.1016/j.cropro.2018.07.009.
Statista. 2021. Production volume of bananas worldwide from 2010 to 2021 (in million metric tons). [Available on: https://www.statista.com/statistics/716037/global-banana-market-volume/] [Accessed: 6 Febuary 2024]
Sulu G, Polat I, Boyaci HF, Yildirim A, Gümrükcü E. 2022. Screening and validation of three molecular markers for disease resistance in eggplant. Czech J Genet Plant Breed 58 (2): 83-92. DOI: 10.17221/105/2021-CJGPB.
Thangavelu R, Edwinraj E, Gopi M, Pushpakanth P, Sharmila K, Prabaharan M, Loganathan M, Uma S. 2022. Development of PCR-based race-specific markers for differentiation of Indian Fusarium oxysporum f. sp. cubense, the causal agent of Fusarium wilt in banana. J Fungi 8 (1): 53. DOI: 10.3390/jof8010053.
Tomaszewska P. 2021. Understanding polyploid banana origins. A commentary on: ‘Unravelling the complex story of intergenomic recombination in ABB allotriploid bananas’. Ann Bot 127 (1): iv–v. DOI: 10.1093/aob/mcaa183.
Valmayor RV, Jamaluddin SH, Silayoi B, Kusumo S, Danh LD, Pascua OC, Espino RRC. 2000. Banana cultivar names and synonyms in Southeast Asia. International Network for Improvement of Banana and Plantain-Asia and the Pacific Office, Laguna (Philippines).
Venkataramanamma K, Reddy BV, Saradajayalakshmi R, Jayalakshmi V, Prasad KV. 2023. Identification of races of Fusarium oxysporum f. sp. ciceris, inciting wilt of chickpea in Andhra Pradesh and parts of Telangana. Legume Res Int J 46 (4): 506-512. DOI: 10.18805/LR-4393.
Walduck G, Daly A. 2007. Banana tropical race 4 panama disease management. In: Northern Territory Department of Primary Industry, Fisheries & Mines Primary Industries. Technical Annual Report 2006-07.
Wang F, Xia L, LV S, Xu C, Niu Y, Liu W, Zeng L, Zhou J, Hu B. 2018. Development of a mitochondrial SCAR marker related to susceptibility of banana (Musa AAA Cavendish) to Fusarium oxysporum f. sp. cubense race 4. Not Bot Horti Agrobot Cluj-Na 46: 509-516. DOI: 10.15835/nbha46211053.
Wang W, Hu Y, Sun D, Staehelin C, Xin D, Xie J. 2012. Identification and evaluation of two diagnostic markers linked to Fusarium wilt resistance (race 4) in banana (Musa spp.). Mol Biol Rep 39: 451-459. DOI: 10.1007/s11033-011-0758-6.
Yang X, Wu Y, Su J, Ao N, Guan Z, Jiang J, Chen S, Fang W, Chen F, Zhang F. 2019. Genetic variation and development of a SCAR marker of anemone-type flower in chrysanthemum. Mol Breed 39: 48. DOI: 10.1007/s11032-019-0958-7.
Zhang J, Panthee DR. 2021. Development of codominant SCAR markers to detect the Pto, Tm22, I3 and Sw5 genes in tomato (Solanum lycopersicum). Plant Breed 140 (2): 342-348. DOI: 10.1111/pbr.12902.
Zheng K, Cai Y, Chen W, Gao Y, Jin J, Wang H, Feng S, Lu J. 2021. Development, identification, and application of a germplasm specific SCAR marker for Dendrobium officinale Kimura et Migo. Front Plant Sci 12: 669458. DOI: 10.3389/fpls.2021.669458.
Zheng SJ, García-Bastidas FA, Li X, Zeng L, Bai T, Xu S, Yin K, Li H, Fu G, Yu Y, Yang L, Nguyen HC, Douangboupha B, Khaing AA, Drenth A, Seidl MF, Meijer HJG, Kema GHJ. 2018. New geographical insights of the latest expansion of Fusarium oxysporum f. sp. cubense tropical race 4 into the greater Mekong subregion. Front Plant Sci 9: 457. DOI: 10.3389/fpls.2018.00457.
Zuo C, Deng G, Li B, Huo H, Li C, Hu C, Kuang R, Yang Q, Dong T, Sheng O, Yi G. 2018. Germplasm screening of Musa spp. for resistance to Fusarium oxysporum f. sp. cubense tropical race 4 (Foc TR4). Eur J Plant Pathol 151: 723-734. DOI: 10.1007/s10658-017-1406-3.

Most read articles by the same author(s)